IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08491-9.html
   My bibliography  Save this article

A number-based inventory of size-resolved black carbon particle emissions by global civil aviation

Author

Listed:
  • Xiaole Zhang

    (ETH Zürich
    Empa)

  • Xi Chen

    (ETH Zürich)

  • Jing Wang

    (ETH Zürich
    Empa)

Abstract

With the rapidly growing global air traffic, the impacts of the black carbon (BC) in the aviation exhaust on climate, environment and public health are likely rising. The particle number and size distribution are crucial metrics for toxicological analysis and aerosol-cloud interactions. Here, a size-resolved BC particle number emission inventory was developed for the global civil aviation. The BC particle number emission is approximately (10.9 ± 2.1) × 1025 per year with an average emission index of (6.06 ± 1.18) × 1014 per kg of burned fuel, which is about 1.3% of the total ground anthropogenic emissions, and 3.6% of the road transport emission. The global aviation emitted BC particles follow a lognormal distribution with a geometric mean diameter (GMD) of 31.99 ± 0.8 nm and a geometric standard deviation (GSD) of 1.85 ± 0.016. The variabilities of GMDs and GSDs for all flights are about 4.8 and 0.08 nm, respectively. The inventory provides new data for assessing the aviation impacts.

Suggested Citation

  • Xiaole Zhang & Xi Chen & Jing Wang, 2019. "A number-based inventory of size-resolved black carbon particle emissions by global civil aviation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08491-9
    DOI: 10.1038/s41467-019-08491-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08491-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08491-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08491-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.