IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v2y2012i6d10.1038_nclimate1456.html
   My bibliography  Save this article

Evaluation of climate models using palaeoclimatic data

Author

Listed:
  • Pascale Braconnot

    (Insitut Pierre Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, unité mixte de recherches CEA-CNRS-UVSQ)

  • Sandy P. Harrison

    (School of Biological Sciences, Macquarie University)

  • Masa Kageyama

    (Insitut Pierre Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, unité mixte de recherches CEA-CNRS-UVSQ)

  • Patrick J. Bartlein

    (University of Oregon)

  • Valerie Masson-Delmotte

    (Insitut Pierre Simon Laplace/Laboratoire des Sciences du Climat et de l'Environnement, unité mixte de recherches CEA-CNRS-UVSQ)

  • Ayako Abe-Ouchi

    (Center for Climate System Research, University of Tokyo)

  • Bette Otto-Bliesner

    (National Center for Atmospheric Research)

  • Yan Zhao

    (School of Biological Sciences, Macquarie University)

Abstract

There is large uncertainty about the magnitude of warming and how rainfall patterns will change in response to any given scenario of future changes in atmospheric composition and land use. The models used for future climate projections were developed and calibrated using climate observations from the past 40 years. The geologic record of environmental responses to climate changes provides a unique opportunity to test model performance outside this limited climate range. Evaluation of model simulations against palaeodata shows that models reproduce the direction and large-scale patterns of past changes in climate, but tend to underestimate the magnitude of regional changes. As part of the effort to reduce model-related uncertainty and produce more reliable estimates of twenty-first century climate, the Palaeoclimate Modelling Intercomparison Project is systematically applying palaeoevaluation techniques to simulations of the past run with the models used to make future projections. This evaluation will provide assessments of model performance, including whether a model is sufficiently sensitive to changes in atmospheric composition, as well as providing estimates of the strength of biosphere and other feedbacks that could amplify the model response to these changes and modify the characteristics of climate variability.

Suggested Citation

  • Pascale Braconnot & Sandy P. Harrison & Masa Kageyama & Patrick J. Bartlein & Valerie Masson-Delmotte & Ayako Abe-Ouchi & Bette Otto-Bliesner & Yan Zhao, 2012. "Evaluation of climate models using palaeoclimatic data," Nature Climate Change, Nature, vol. 2(6), pages 417-424, June.
  • Handle: RePEc:nat:natcli:v:2:y:2012:i:6:d:10.1038_nclimate1456
    DOI: 10.1038/nclimate1456
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1456
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanh Le & Deg-Hyo Bae, 2013. "Evaluating the Utility of IPCC AR4 GCMs for Hydrological Application in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3227-3246, July.
    2. Anne Dallmeyer & Thomas Kleinen & Martin Claussen & Nils Weitzel & Xianyong Cao & Ulrike Herzschuh, 2022. "The deglacial forest conundrum," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yajie Dong & Naiqin Wu & Fengjiang Li & Dan Zhang & Yueting Zhang & Caiming Shen & Houyuan Lu, 2022. "The Holocene temperature conundrum answered by mollusk records from East Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Edward Armstrong & Miikka Tallavaara & Peter O. Hopcroft & Paul J. Valdes, 2023. "North African humid periods over the past 800,000 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Wenchao Zhang & Haibin Wu & Jun Cheng & Junyan Geng & Qin Li & Yong Sun & Yanyan Yu & Huayu Lu & Zhengtang Guo, 2022. "Holocene seasonal temperature evolution and spatial variability over the Northern Hemisphere landmass," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Christoph C. Raible & Joaquim G. Pinto & Patrick Ludwig & Martina Messmer, 2021. "A review of past changes in extratropical cyclones in the northern hemisphere and what can be learned for the future," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    7. Alessandra Giannini & Alexey Kaplan, 2019. "The role of aerosols and greenhouse gases in Sahel drought and recovery," Climatic Change, Springer, vol. 152(3), pages 449-466, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:2:y:2012:i:6:d:10.1038_nclimate1456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.