IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v10y2020i10d10.1038_s41558-020-0855-4.html
   My bibliography  Save this article

Rapid worldwide growth of glacial lakes since 1990

Author

Listed:
  • Dan H. Shugar

    (University of Washington Tacoma
    University of Calgary)

  • Aaron Burr

    (University of Washington Tacoma)

  • Umesh K. Haritashya

    (University of Dayton)

  • Jeffrey S. Kargel

    (Planetary Science Institute)

  • C. Scott Watson

    (University of Leeds)

  • Maureen C. Kennedy

    (University of Washington Tacoma)

  • Alexandre R. Bevington

    (Government of British Columbia)

  • Richard A. Betts

    (University of Exeter
    Met Office Hadley Centre)

  • Stephan Harrison

    (University of Exeter)

  • Katherine Strattman

    (University of Dayton
    University of Alabama in Huntsville)

Abstract

Glacial lakes are rapidly growing in response to climate change and glacier retreat. The role of these lakes as terrestrial storage for glacial meltwater is currently unknown and not accounted for in global sea level assessments. Here, we map glacier lakes around the world using 254,795 satellite images and use scaling relations to estimate that global glacier lake volume increased by around 48%, to 156.5 km3, between 1990 and 2018. This methodology provides a near-global database and analysis of glacial lake extent, volume and change. Over the study period, lake numbers and total area increased by 53 and 51%, respectively. Median lake size has increased 3%; however, the 95th percentile has increased by around 9%. Currently, glacial lakes hold about 0.43 mm of sea level equivalent. As glaciers continue to retreat and feed glacial lakes, the implications for glacial lake outburst floods and water resources are of considerable societal and ecological importance.

Suggested Citation

  • Dan H. Shugar & Aaron Burr & Umesh K. Haritashya & Jeffrey S. Kargel & C. Scott Watson & Maureen C. Kennedy & Alexandre R. Bevington & Richard A. Betts & Stephan Harrison & Katherine Strattman, 2020. "Rapid worldwide growth of glacial lakes since 1990," Nature Climate Change, Nature, vol. 10(10), pages 939-945, October.
  • Handle: RePEc:nat:natcli:v:10:y:2020:i:10:d:10.1038_s41558-020-0855-4
    DOI: 10.1038/s41558-020-0855-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-0855-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-0855-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    2. Uttam Puri Goswami & Manish Kumar Goyal, 2021. "Assessment of glacial lake development and downstream flood impacts of critical glacial lake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1027-1046, October.
    3. Quintana, Jose J. & Ramos, Alejandro & Diaz, Moises & Nuez, Ignacio, 2021. "Energy efficiency analysis as a function of the working voltages in supercapacitors," Energy, Elsevier, vol. 230(C).
    4. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur & Ögmundardóttir, Helga, 2021. "Co-production processes underpinning the ecosystem services of glaciers and adaptive management in the era of climate change," Ecosystem Services, Elsevier, vol. 50(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:10:y:2020:i:10:d:10.1038_s41558-020-0855-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.