IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v53y2020i3d10.1007_s11123-020-00581-x.html
   My bibliography  Save this article

Probabilistic frontier regression model for multinomial ordinal type output data

Author

Listed:
  • Meena Badade

    (Savitribai Phule Pune University)

  • T. V. Ramanathan

    (Savitribai Phule Pune University)

Abstract

This paper proposes a probabilistic frontier regression model for multinomial ordinal type output data. We consider some of the output categories as ‘categories of interest’ and the reduction in probability of an output falling into these categories is attributed to the lack in technical efficiency (TE) of the decision-making unit. A measure for TE is proposed to determine the deviations of individual units from the probabilistic frontier of ‘categories of interest’. Simulation results show that the average estimated TE is close to its true value. An application of the proposed model is provided to the data related to the Indian companies, where the categorical output variable is an indicator of return on equity (ROE). Individual TE is obtained for each of the decision-making units (companies under consideration).

Suggested Citation

  • Meena Badade & T. V. Ramanathan, 2020. "Probabilistic frontier regression model for multinomial ordinal type output data," Journal of Productivity Analysis, Springer, vol. 53(3), pages 339-354, June.
  • Handle: RePEc:kap:jproda:v:53:y:2020:i:3:d:10.1007_s11123-020-00581-x
    DOI: 10.1007/s11123-020-00581-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-020-00581-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-020-00581-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronghua Luo & Hansheng Wang, 2008. "A composite logistic regression approach for ordinal panel data regression," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 1(1), pages 29-43.
    2. Greene,William H. & Hensher,David A., 2010. "Modeling Ordered Choices," Cambridge Books, Cambridge University Press, number 9780521142373.
    3. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 126(2), pages 355-384, June.
    4. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    5. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    6. Greene,William H. & Hensher,David A., 2010. "Modeling Ordered Choices," Cambridge Books, Cambridge University Press, number 9780521194204.
    7. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633.
    8. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    9. Henrik Jaldell, 2019. "Measuring productive performance using binary and ordinal output variables: the case of the Swedish fire and rescue services," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 907-917, February.
    10. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    11. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    12. Efthymios G. Tsionas, 2007. "Efficiency Measurement with the Weibull Stochastic Frontier," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(5), pages 693-706, October.
    13. Junrong Liu & Robin C. Sickles & E. G. Tsionas, 2017. "Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity," Econometrics, MDPI, vol. 5(3), pages 1-21, July.
    14. Xiaokun Wang & Kara M. Kockelman, 2009. "Application of the dynamic spatial ordered probit model: Patterns of land development change in Austin, Texas," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 345-365, June.
    15. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
    16. Meena Badade & T. V. Ramanathan, 2019. "Probabilistic frontier regression models for binary type output data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(13), pages 2460-2480, October.
    17. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    18. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Tang Hwu & Tsu-Tan Fu & Wen-Jen Tsay, 2021. "Estimation and efficiency evaluation of stochastic frontier models with interval dependent variables," Journal of Productivity Analysis, Springer, vol. 56(1), pages 33-44, August.
    2. Meena Badade & T. V. Ramanathan, 2022. "Probabilistic Frontier Regression Models for Count Type Output Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 235-260, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena Badade & T. V. Ramanathan, 2022. "Probabilistic Frontier Regression Models for Count Type Output Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 235-260, September.
    2. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    3. Nguyen Hung Anh & Wolfgang Bokelmann & Do Thi Nga & Nguyen Van Minh, 2019. "Toward Sustainability or Efficiency: The Case of Smallholder Coffee Farmers in Vietnam," Economies, MDPI, vol. 7(3), pages 1-25, July.
    4. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    5. Gholamreza Hajargasht & William E. Griffiths, 2018. "Estimation and testing of stochastic frontier models using variational Bayes," Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
    6. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    7. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    8. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Monash Econometrics and Business Statistics Working Papers 3/10, Monash University, Department of Econometrics and Business Statistics.
    9. Dong, Xiao-yuan & Putterman, Louis, 1997. "Productivity and Organization in China's Rural Industries: A Stochastic Frontier Analysis," Journal of Comparative Economics, Elsevier, vol. 24(2), pages 181-201, April.
    10. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    11. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    12. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    13. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    14. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    15. Maira Caño- Guiral, 1995. "Competitividad y eficiencia técnica. Un modelo de datos panel para la industria láctea uruguaya," Documentos de Trabajo (working papers) 0795, Department of Economics - dECON.
    16. Alecos Papadopoulos, 2021. "Stochastic frontier models using the Generalized Exponential distribution," Journal of Productivity Analysis, Springer, vol. 55(1), pages 15-29, February.
    17. Tsionas, Efthymios G., 2012. "Maximum likelihood estimation of stochastic frontier models by the Fourier transform," Journal of Econometrics, Elsevier, vol. 170(1), pages 234-248.
    18. Cuéllar Martín, Jaime & Martín-Román, Ángel L. & Moral, Alfonso, 2017. "A composed error model decomposition and spatial analysis of local unemployment," MPRA Paper 79783, University Library of Munich, Germany.
    19. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    20. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2018. "The Spatial Efficiency Multiplier and Common Correlated Effects in a Spatial Autoregressive Stochastic Frontier Model," Working Papers 18-003, Rice University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:53:y:2020:i:3:d:10.1007_s11123-020-00581-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.