IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v47y2017i1d10.1007_s11123-017-0492-8.html
   My bibliography  Save this article

The ‘wrong skewness’ problem: a re-specification of stochastic frontiers

Author

Listed:
  • Graziella Bonanno

    (Sapienza University of Rome)

  • Domenico De Giovanni

    (Statistics and Finance, University of Calabria)

  • Filippo Domma

    (Statistics and Finance, University of Calabria)

Abstract

In this paper, we study the ‘wrong skewness phenomenon’ in stochastic frontiers (SF), which consists in the observed difference between the expected and estimated sign of the asymmetry of the composite error, and causes the ‘wrong skewness problem’, for which the estimated inefficiency in the whole industry is zero. We propose a more general and flexible specification of the SF model, introducing dependences between the two error components and asymmetry (positive or negative) of the random error. This re-specification allows us to decompose the third moment of the composite error into three components, namely: (i) the asymmetry of the inefficiency term; (ii) the asymmetry of the random error; and (iii) the structure of dependence between the error components. This decomposition suggests that the wrong skewness anomaly is an ill-posed problem, because we cannot establish ex ante the expected sign of the asymmetry of the composite error. We report a relevant special case that allows us to estimate the three components of the asymmetry of the composite error and, consequently, to interpret the estimated sign. We present two empirical applications. In the first dataset, where the classic SF has the wrong skewness, an estimation of our model rejects the dependence hypothesis, but accepts the asymmetry of the random error, thus justifying the sign of the skewness of the composite error. More importantly, we estimate a non-zero inefficiency, thus solving the wrong skewness problem. In the second dataset, where the classic SF does not yield any anomaly, an estimation of our model provides evidence for the presence of dependence. In such situations, we show that there is a remarkable difference in the efficiency distribution between the classic SF and our class of models.

Suggested Citation

  • Graziella Bonanno & Domenico De Giovanni & Filippo Domma, 2017. "The ‘wrong skewness’ problem: a re-specification of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 47(1), pages 49-64, February.
  • Handle: RePEc:kap:jproda:v:47:y:2017:i:1:d:10.1007_s11123-017-0492-8
    DOI: 10.1007/s11123-017-0492-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-017-0492-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-017-0492-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    2. Christine Amsler & Artem Prokhorov & Peter Schmidt, 2014. "Using Copulas to Model Time Dependence in Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 497-522, August.
    3. Eric J. Bartelsman & Wayne Gray, 1996. "The NBER Manufacturing Productivity Database," NBER Technical Working Papers 0205, National Bureau of Economic Research, Inc.
    4. Filippo Domma & Pier Perri, 2009. "Some developments on the log-Dagum distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(2), pages 205-220, July.
    5. Jason Cook & James McDonald, 2013. "Partially Adaptive Estimation of Interval Censored Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 119-131, June.
    6. Robin C. Sickles & William C. Horrace (ed.), 2014. "Festschrift in Honor of Peter Schmidt," Springer Books, Springer, edition 127, number 978-1-4899-8008-3, December.
    7. Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
    8. Qu Feng & William Horrace & Guiying Laura Wu, 2013. "Wrong Skewness and Finite Sample Correction in Parametric Stochastic Frontier Models Abstract: In parametric stochastic frontier models, the composed error is specified as the sum of a two-sided noise," Center for Policy Research Working Papers 154, Center for Policy Research, Maxwell School, Syracuse University.
    9. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    10. Carree, Martin A., 2002. "Technological inefficiency and the skewness of the error component in stochastic frontier analysis," Economics Letters, Elsevier, vol. 77(1), pages 101-107, September.
    11. Bădin, Luiza & Simar, Léopold, 2009. "A Bias-Corrected Nonparametric Envelopment Estimator Of Frontiers," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1289-1318, October.
    12. Hung-pin Lai & Cliff Huang, 2013. "Maximum likelihood estimation of seemingly unrelated stochastic frontier regressions," Journal of Productivity Analysis, Springer, vol. 40(1), pages 1-14, August.
    13. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    14. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    15. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    16. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    17. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    18. Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
    19. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    20. Efthymios G. Tsionas, 2007. "Efficiency Measurement with the Weibull Stochastic Frontier," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(5), pages 693-706, October.
    21. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    22. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    23. Green, Alison & Mayes, David, 1991. "Technical Inefficiency in Manufacturing Industries," Economic Journal, Royal Economic Society, vol. 101(406), pages 523-538, May.
    24. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    25. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    26. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg Badunenko & Daniel J. Henderson, 2024. "Production analysis with asymmetric noise," Journal of Productivity Analysis, Springer, vol. 61(1), pages 1-18, February.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    4. Graziella Bonanno & Filippo Domma, 2018. "We propose an empirical application of models derived in Bonanno et al. (2017) for estimating cost efficiency (CE) on data used by Greene (1990) to test Gamma distribution for the inefficiency compone," Economics Bulletin, AccessEcon, vol. 38(4), pages 2379-2388.
    5. Christopher F. Parmeter & Shirong Zhao, 2023. "An alternative corrected ordinary least squares estimator for the stochastic frontier model," Empirical Economics, Springer, vol. 64(6), pages 2831-2857, June.
    6. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graziella Bonanno & Filippo Domma, 2022. "Analytical Derivations of New Specifications for Stochastic Frontiers with Applications," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    2. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    3. Christine Amsler & Peter Schmidt & Wen-Jen Tsay, 2019. "Evaluating the CDF of the distribution of the stochastic frontier composed error," Journal of Productivity Analysis, Springer, vol. 52(1), pages 29-35, December.
    4. Tai-Hsin Huang & Nan-Hung Liu & Subal C. Kumbhakar, 2018. "Joint estimation of the Lerner index and cost efficiency using copula methods," Empirical Economics, Springer, vol. 54(2), pages 799-822, March.
    5. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    6. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    7. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    8. Emilio Gómez-Déniz & Nancy Dávila-Cárdenes & Alejandro Leiva-Arcas & María J. Martínez-Patiño, 2021. "Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    9. Christian M. Hafner & Hans Manner & Léopold Simar, 2018. "The “wrong skewness” problem in stochastic frontier models: A new approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 380-400, April.
    10. Jun Cai & Qu Feng & William C. Horrace & Guiying Laura Wu, 2021. "Wrong skewness and finite sample correction in the normal-half normal stochastic frontier model," Empirical Economics, Springer, vol. 60(6), pages 2837-2866, June.
    11. William C. Horrace & Ian A. Wright, 2020. "Stationary Points for Parametric Stochastic Frontier Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 516-526, July.
    12. Emilio Gómez-Déniz & Jorge Pérez-Rodríguez, 2015. "Closed-form solution for a bivariate distribution in stochastic frontier models with dependent errors," Journal of Productivity Analysis, Springer, vol. 43(2), pages 215-223, April.
    13. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    14. Hafner, Christian & Manner, Hans & Simar, Leopold, 2013. "The “wrong skewnessâ€Ω problem in stochastic frontier models: A new approach," LIDAM Discussion Papers ISBA 2013046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.
    16. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    17. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    18. Zuniga-Gonzalez, C.A, 2009. "Analisis de la eficiencia tecnica de la unidad de VPN UNAN-LEON utilizando funcion de produccion stochastic frontier, 2007-2008 [Technical efficiency analysis of the PNV unit UNAN-Leon using produc," MPRA Paper 110950, University Library of Munich, Germany, revised 14 Jan 2009.
    19. Reddy, Mahendra, 2002. "Implication of Tenancy Status on Productivity and Efficiency: Evidence from Fiji," Sri Lankan Journal of Agricultural Economics, Sri Lanka Agricultural Economics Association (SAEA), vol. 4, pages 1-20.
    20. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.

    More about this item

    Keywords

    Stochastic frontier models; Skewness; Generalized logistic distribution; Dependence; Copula functions;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:47:y:2017:i:1:d:10.1007_s11123-017-0492-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.