IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v5y1971i3p302-313.html
   My bibliography  Save this article

Three-Dimensional Representation of Traffic Flow

Author

Listed:
  • Yasuji Makigami

    (University of California, Berkeley)

  • G. F. Newell

    (University of California, Berkeley)

  • Richard Rothery

    (General Motors Research Laboratories, Warren, Michigan)

Abstract

If one numbers vehicles consecutively along a roadway and draws the space-time trajectory of each vehicle on the same x - t graph, then this family of curves can be interpreted as the contours of a three-dimensional surface for which the third dimension is vehicle number n . The intersection of the surface with planes of constant x are the cumulative arrival curves, n vs. t , at the location x . If the surface is smoothed, the orientation of the tangent plane at any point determines the flow q , density k , and car velocity v . All commonly observed properties of traffic flow have simple geometric interpretations in this three-dimensional model.

Suggested Citation

  • Yasuji Makigami & G. F. Newell & Richard Rothery, 1971. "Three-Dimensional Representation of Traffic Flow," Transportation Science, INFORMS, vol. 5(3), pages 302-313, August.
  • Handle: RePEc:inm:ortrsc:v:5:y:1971:i:3:p:302-313
    DOI: 10.1287/trsc.5.3.302
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.5.3.302
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.5.3.302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smilowitz, Karen & Daganzo, Carlos & Cassidy, Michael & Bertini, Robert, 1998. "Some Observations Of Highway Traffic In Long Queues," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8rd637pq, Institute of Transportation Studies, UC Berkeley.
    2. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    3. Cassidy, Michael J., 1998. "Bivariate relations in nearly stationary highway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 49-59, January.
    4. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    5. Blake Davis & Ang Ji & Bichen Liu & David Levinson, 2020. "Moving Array Traffic Probes," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    6. Shi, Tie & Zhou, Xuesong, 2015. "A mixed integer programming model for optimizing multi-level operations process in railroad yards," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 19-39.
    7. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    8. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    9. Hans, Etienne & Chiabaut, Nicolas & Leclercq, Ludovic, 2015. "Applying variational theory to travel time estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 169-181.
    10. van Erp, Paul B.C. & Knoop, Victor L. & Hoogendoorn, Serge P., 2018. "Macroscopic traffic state estimation using relative flows from stationary and moving observers," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 281-299.
    11. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    12. Klug, Florian, 2014. "Modelling and analysis of synchronised material flow with fluid dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 404-417.
    13. Laval, Jorge A. & Leclercq, Ludovic, 2013. "The Hamilton–Jacobi partial differential equation and the three representations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 17-30.
    14. Daganzo, Carlos F. & Laval, Jorge A., 2005. "On the numerical treatment of moving bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 31-46, January.
    15. Gu, Weihua & Gayah, Vikash V. & Cassidy, Michael J. & Saade, Nathalie, 2014. "On the impacts of bus stops near signalized intersections: Models of car and bus delays," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 123-140.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:5:y:1971:i:3:p:302-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.