IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i4p957-967.html
   My bibliography  Save this article

Optimal Algorithm for the General Quay Crane Double-Cycling Problem

Author

Listed:
  • Chung-Yee Lee

    (Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Ming Liu

    (School of Economics and Management, Tongji University, 200092 Shanghai, China,)

  • Chengbin Chu

    (Laboratoire Génie Industriel, École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France)

Abstract

Quay crane efficiency is the key bottleneck for container port productivity. An important issue of container terminal optimization is the quay crane double-cycling problem (QCDCP). For the simple scenario without hatch covers, a two-machine flow shop scheduled model can be formulated that can be solved by Johnson’s rule. For the general QCDCP with hatch covers, the state-of-the-art solution approaches are only heuristics. The computational complexity of the problem, however, remains an open question.This paper focuses on the general QCDCP. We investigate the computational complexity of the problem, by showing that it can be formulated as a flow shop scheduling problem with series-parallel precedence constraints, thus allowing it to be solved polynomially. For ease of implementation, we present an optimal algorithm for the general QCDCP, which is a special and simplified version of Sidney’s algorithm.

Suggested Citation

  • Chung-Yee Lee & Ming Liu & Chengbin Chu, 2015. "Optimal Algorithm for the General Quay Crane Double-Cycling Problem," Transportation Science, INFORMS, vol. 49(4), pages 957-967, November.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:4:p:957-967
    DOI: 10.1287/trsc.2014.0563
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2014.0563
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2014.0563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey B. Sidney, 1979. "The Two-Machine Maximum Flow Time Problem with Series Parallel Precedence Relations," Operations Research, INFORMS, vol. 27(4), pages 782-791, August.
    2. Kap Hwan Kim & Ki Young Kim, 1999. "An Optimal Routing Algorithm for a Transfer Crane in Port Container Terminals," Transportation Science, INFORMS, vol. 33(1), pages 17-33, February.
    3. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    4. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    5. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
    6. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    7. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    8. Lim, Andrew & Xu, Zhou, 2006. "A critical-shaking neighborhood search for the yard allocation problem," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1247-1259, October.
    9. Goodchild, A.V. & Daganzo, C.F., 2007. "Crane double cycling in container ports: Planning methods and evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 875-891, October.
    10. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
    11. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    12. Clyde L. Monma, 1980. "Sequencing to Minimize the Maximum Job Cost," Operations Research, INFORMS, vol. 28(4), pages 942-951, August.
    13. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    14. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    15. Lee, Der-Horng & Wang, Hui Qiu & Miao, Lixin, 2008. "Quay crane scheduling with non-interference constraints in port container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 124-135, January.
    16. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifeng Zheng & Yaxin Pang & Ming Liu & Yinfeng Xu, 2020. "Dynamic programming algorithms for the general quay crane double-cycling problem with internal-reshuffles," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 708-724, April.
    2. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    3. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    4. Xiaoju Zhang & Huijuan Li & Meng Wu, 2022. "Optimization of Resource Allocation in Automated Container Terminals," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    5. Zhang, An & Zhang, Wenshuai & Chen, Yong & Chen, Guangting & Chen, Xufeng, 2017. "Approximate the scheduling of quay cranes with non-crossing constraints," European Journal of Operational Research, Elsevier, vol. 258(3), pages 820-828.
    6. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    2. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    3. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    4. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    5. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    7. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    8. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    9. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    10. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    11. Feifeng Zheng & Yaxin Pang & Ming Liu & Yinfeng Xu, 2020. "Dynamic programming algorithms for the general quay crane double-cycling problem with internal-reshuffles," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 708-724, April.
    12. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
    13. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    14. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    15. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
    16. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    17. Zhang, An & Zhang, Wenshuai & Chen, Yong & Chen, Guangting & Chen, Xufeng, 2017. "Approximate the scheduling of quay cranes with non-crossing constraints," European Journal of Operational Research, Elsevier, vol. 258(3), pages 820-828.
    18. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    19. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    20. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:4:p:957-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.