IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i2p402-419.html
   My bibliography  Save this article

Optimization of a Real-World Auto-Carrier Transportation Problem

Author

Listed:
  • Mauro Dell’Amico

    (DISMI, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy)

  • Simone Falavigna

    (DISMI, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy)

  • Manuel Iori

    (DISMI, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy)

Abstract

We study a real-world distribution problem arising in the automotive field in which cars, trucks, and other vehicles have to be loaded onto auto-carriers and then delivered to dealers. The solution of the problem involves both the computation of the routing of the auto-carriers along the road network and the determination of a feasible loading for each carrier. We solve the problem by means of an iterated local search algorithm that makes use of several inner local search strategies for the routing part and mathematical modeling and enumeration techniques for the loading part. Extensive computational results on real-world instances show that good savings on the total cost can be obtained within small computational efforts.

Suggested Citation

  • Mauro Dell’Amico & Simone Falavigna & Manuel Iori, 2015. "Optimization of a Real-World Auto-Carrier Transportation Problem," Transportation Science, INFORMS, vol. 49(2), pages 402-419, May.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:402-419
    DOI: 10.1287/trsc.2013.0492
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0492
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manuel Iori & Silvano Martello, 2010. "Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 4-27, July.
    2. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    3. Manuel Iori & Juan-José Salazar-González & Daniele Vigo, 2007. "An Exact Approach for the Vehicle Routing Problem with Two-Dimensional Loading Constraints," Transportation Science, INFORMS, vol. 41(2), pages 253-264, May.
    4. Michel Gendreau & Manuel Iori & Gilbert Laporte & Silvano Martello, 2006. "A Tabu Search Algorithm for a Routing and Container Loading Problem," Transportation Science, INFORMS, vol. 40(3), pages 342-350, August.
    5. Helena R. Lourenço & Olivier C. Martin & Thomas Stützle, 2010. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 363-397, Springer.
    6. Mingzhou Jin & Sandra Eksioglu & Burak Eksioglu & Haiyuan Wang, 2010. "Mode Selection for Automotive Distribution with Quantity Discounts," Networks and Spatial Economics, Springer, vol. 10(1), pages 1-13, March.
    7. Hoff, Arild & Gribkovskaia, Irina & Laporte, Gilbert & Løkketangen, Arne, 2009. "Lasso solution strategies for the vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 192(3), pages 755-766, February.
    8. Manuel Iori & Silvano Martello, 2010. "Rejoinder on: Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 41-42, July.
    9. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    10. Manuel A. Alba Martínez & Jean-François Cordeau & Mauro Dell'Amico & Manuel Iori, 2013. "A Branch-and-Cut Algorithm for the Double Traveling Salesman Problem with Multiple Stacks," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 41-55, February.
    11. R. Tadei & G. Perboli & F. Della Croce, 2002. "A Heuristic Algorithm for the Auto-Carrier Transportation Problem," Transportation Science, INFORMS, vol. 36(1), pages 55-62, February.
    12. Gerald Y. Agbegha & Ronald H. Ballou & Kamlesh Mathur, 1998. "Optimizing Auto-Carrier Loading," Transportation Science, INFORMS, vol. 32(2), pages 174-188, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    2. Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Bonassa, Antonio Carlos & Cunha, Claudio Barbieri da & Isler, Cassiano Augusto, 2023. "A multi-start local search heuristic for the multi-period auto-carrier loading and transportation problem in Brazil," European Journal of Operational Research, Elsevier, vol. 307(1), pages 193-211.
    4. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cordeau, Jean-François & Dell’Amico, Mauro & Falavigna, Simone & Iori, Manuel, 2015. "A rolling horizon algorithm for auto-carrier transportation," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 68-80.
    2. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    3. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    4. Xiang Song & Dylan Jones & Nasrin Asgari & Tim Pigden, 2020. "Multi-objective vehicle routing and loading with time window constraints: a real-life application," Annals of Operations Research, Springer, vol. 291(1), pages 799-825, August.
    5. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2017. "Vehicle routing strategies for pick-up and delivery service under two dimensional loading constraints," Operational Research, Springer, vol. 17(1), pages 115-143, April.
    6. M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2020. "A GRASP algorithm for multi container loading problems with practical constraints," 4OR, Springer, vol. 18(1), pages 49-72, March.
    7. Männel, Dirk & Bortfeldt, Andreas, 2016. "A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 254(3), pages 840-858.
    8. Wang, Yu & Chen, Feng & Chen, Zhi-Long, 2018. "Pickup and delivery of automobiles from warehouses to dealers," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 412-430.
    9. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Designing vehicle routes for a mix of different request types, under time windows and loading constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 303-317.
    10. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Integrated distribution and loading planning via a compact metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 228(1), pages 56-71.
    11. Zhi-Hua Hu & Yingxue Zhao & Sha Tao & Zhao-Han Sheng, 2015. "Finished-vehicle transporter routing problem solved by loading pattern discovery," Annals of Operations Research, Springer, vol. 234(1), pages 37-56, November.
    12. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    13. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    14. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    15. Dirk Männel & Andreas Bortfeldt, 2015. "A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints," FEMM Working Papers 150015, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    16. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    17. Rajaei, Maryam & Moslehi, Ghasem & Reisi-Nafchi, Mohammad, 2022. "The split heterogeneous vehicle routing problem with three-dimensional loading constraints on a large scale," European Journal of Operational Research, Elsevier, vol. 299(2), pages 706-721.
    18. Wei, Lijun & Zhang, Zhenzhen & Zhang, Defu & Lim, Andrew, 2015. "A variable neighborhood search for the capacitated vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 243(3), pages 798-814.
    19. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    20. Alonso, M.T. & Martinez-Sykora, A. & Alvarez-Valdes, R. & Parreño, F., 2022. "The pallet-loading vehicle routing problem with stability constraints," European Journal of Operational Research, Elsevier, vol. 302(3), pages 860-873.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:402-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.