IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v37y2003i2p153-169.html
   My bibliography  Save this article

An Improved Branch-and-Cut Algorithm for the Capacitated Vehicle Routing Problem

Author

Listed:
  • N. R. Achuthan

    (Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845)

  • L. Caccetta

    (Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845)

  • S. P. Hill

    (Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6845)

Abstract

The capacitated vehicle routing problem (CVRP) deals with the distribution of a single commodity from a centralized depot to a number of specified customer locations with known demands. The CVRP considered in this paper assumes common vehicle capacity, fixed or variable number of vehicles, and an objective to minimize the total distance traveled by all the vehicles. This paper develops several new cutting planes for this problem, and uses them in an exact branch-and-cut algorithm. Two of the new cutting planes are based on a specified structure of an optimal solution and its existence. Computational results are reported for 1,650 simulated Euclidean problems as well as 24 standard literature test problems; solved problems range in size from 15–100 customers. A comparative analysis demonstrates the significant computational benefit of the proposed method.

Suggested Citation

  • N. R. Achuthan & L. Caccetta & S. P. Hill, 2003. "An Improved Branch-and-Cut Algorithm for the Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 37(2), pages 153-169, May.
  • Handle: RePEc:inm:ortrsc:v:37:y:2003:i:2:p:153-169
    DOI: 10.1287/trsc.37.2.153.15243
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.37.2.153.15243
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.37.2.153.15243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 1994. "Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees," Operations Research, INFORMS, vol. 42(4), pages 626-642, August.
    2. Harlan Crowder & Manfred W. Padberg, 1980. "Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality," Management Science, INFORMS, vol. 26(5), pages 495-509, May.
    3. Achuthan, N. R. & Caccetta, L., 1991. "Integer linear programming formulation for a vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 52(1), pages 86-89, May.
    4. Achuthan, N. R. & Caccetta, L. & Hill, S. P., 1996. "A new subtour elimination constraint for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 91(3), pages 573-586, June.
    5. Gilbert Laporte & Yves Nobert & Martin Desrochers, 1985. "Optimal Routing under Capacity and Distance Restrictions," Operations Research, INFORMS, vol. 33(5), pages 1050-1073, October.
    6. Campos, V. & Corberan, A. & Mota, E., 1991. "Polyhedral results for a vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 52(1), pages 75-85, May.
    7. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    8. Paessens, H., 1988. "The savings algorithm for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 34(3), pages 336-344, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2011. "A branch and cut algorithm for the location-routing problem with simultaneous pickup and delivery," European Journal of Operational Research, Elsevier, vol. 211(2), pages 318-332, June.
    2. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    3. Çetinkaya, Cihan & Karaoglan, Ismail & Gökçen, Hadi, 2013. "Two-stage vehicle routing problem with arc time windows: A mixed integer programming formulation and a heuristic approach," European Journal of Operational Research, Elsevier, vol. 230(3), pages 539-550.
    4. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    5. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    6. Leggieri, Valeria & Haouari, Mohamed, 2017. "Lifted polynomial size formulations for the homogeneous and heterogeneous vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 755-767.
    7. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 248(1), pages 33-51.
    8. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    2. Rafael Martinelli & Claudio Contardo, 2015. "Exact and Heuristic Algorithms for Capacitated Vehicle Routing Problems with Quadratic Costs Structure," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 658-676, November.
    3. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    4. Vigo, Daniele, 1996. "A heuristic algorithm for the asymmetric capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 89(1), pages 108-126, February.
    5. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    6. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    7. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    8. Wang, Shaojun & Sarker, Bhaba R. & Mann, Lawrence & Triantaphyllou, Evangelos, 2004. "Resource planning and a depot location model for electric power restoration," European Journal of Operational Research, Elsevier, vol. 155(1), pages 22-43, May.
    9. Amirsaman Kheirkhah & HamidReza Navidi & Masume Messi Bidgoli, 2016. "A bi-level network interdiction model for solving the hazmat routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 459-471, January.
    10. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    11. Gouveia, Luis, 1995. "A result on projection for the vehicle routing ptoblem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 610-624, September.
    12. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    13. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    14. Augerat, P. & Belenguer, J. M. & Benavent, E. & Corberan, A. & Naddef, D., 1998. "Separating capacity constraints in the CVRP using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 546-557, April.
    15. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    16. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    17. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    18. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    19. Fernando Afonso Santos & Geraldo Robson Mateus & Alexandre Salles da Cunha, 2015. "A Branch-and-Cut-and-Price Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 355-368, May.
    20. Achuthan, N. R. & Caccetta, L. & Hill, S. P., 1996. "A new subtour elimination constraint for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 91(3), pages 573-586, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:37:y:2003:i:2:p:153-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.