IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v34y2000i1p1-20.html
   My bibliography  Save this article

Airline Fleet Assignment with Time Windows

Author

Listed:
  • Brian Rexing

    (Massachusetts Institute of Technology, Center for Transportation Studies, Cambridge, Massachusetts 02139)

  • Cynthia Barnhart

    (Massachusetts Institute of Technology, Center for Transportation Studies, Cambridge, Massachusetts 02139)

  • Tim Kniker

    (Massachusetts Institute of Technology, Center for Transportation Studies, Cambridge, Massachusetts 02139)

  • Ahmad Jarrah

    (Transport Dynamics, Inc., Carnegie Center, Princeton, New Jersey 08540)

  • Nirup Krishnamurthy

    (United Airlines, P.O. Box 66100, Chicago, Illinois 60666)

Abstract

Recognizing that allowing variability in scheduled flight departure times can result in improved flight connection opportunities and a more cost effective fleet assignment, we present a generalized fleet assignment model for simultaneously assigning aircraft types to flights and scheduling flight departures. Our model, a simple variant of basic fleet assignment models, assigns a time window to each flight and then discretizes each window, allowing flight departure times to be optimized. Because problem size can become formidable, much larger than basic fleet assignment models, we develop two algorithmic approaches for solving the model. Our direct solution approach is good for speed and simplicity, whereas our iterative technique minimizes memory usage. Using data from a major U.S. airline, we show that our model can solve real, large-scale problems, and we evaluate the effects of schedule flexibility. In every test scenario, the model produces a fleet assignment with significantly lower costs than the basic model, and, in a separate analysis, the model is used to tighten the schedule, potentially saving aircraft.

Suggested Citation

  • Brian Rexing & Cynthia Barnhart & Tim Kniker & Ahmad Jarrah & Nirup Krishnamurthy, 2000. "Airline Fleet Assignment with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 1-20, February.
  • Handle: RePEc:inm:ortrsc:v:34:y:2000:i:1:p:1-20
    DOI: 10.1287/trsc.34.1.1.12277
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.34.1.1.12277
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.34.1.1.12277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. W. Clarke & C. A. Hane & E. L. Johnson & G. L. Nemhauser, 1996. "Maintenance and Crew Considerations in Fleet Assignment," Transportation Science, INFORMS, vol. 30(3), pages 249-260, August.
    2. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    3. Matthew E. Berge & Craig A. Hopperstad, 1993. "Demand Driven Dispatch: A Method for Dynamic Aircraft Capacity Assignment, Models and Algorithms," Operations Research, INFORMS, vol. 41(1), pages 153-168, February.
    4. Mark S. Daskin & Nicholaos D. Panayotopoulos, 1989. "A Lagrangian Relaxation Approach to Assigning Aircraft to Routes in Hub and Spoke Networks," Transportation Science, INFORMS, vol. 23(2), pages 91-99, May.
    5. Jeph Abara, 1989. "Applying Integer Linear Programming to the Fleet Assignment Problem," Interfaces, INFORMS, vol. 19(4), pages 20-28, August.
    6. Amos Levin, 1971. "Scheduling and Fleet Routing Models for Transportation Systems," Transportation Science, INFORMS, vol. 5(3), pages 232-255, August.
    7. Radhika Subramanian & Richard P. Scheff & John D. Quillinan & D. Steve Wiper & Roy E. Marsten, 1994. "Coldstart: Fleet Assignment at Delta Air Lines," Interfaces, INFORMS, vol. 24(1), pages 104-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    2. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    3. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    4. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.
    5. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    6. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    7. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    8. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    9. Ravindra K. Ahuja & Jon Goodstein & Amit Mukherjee & James B. Orlin & Dushyant Sharma, 2007. "A Very Large-Scale Neighborhood Search Algorithm for the Combined Through-Fleet-Assignment Model," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 416-428, August.
    10. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    11. Ahmad I. Jarrah & Jon Goodstein & Ram Narasimhan, 2000. "An Efficient Airline Re-Fleeting Model for the Incremental Modification of Planned Fleet Assignments," Transportation Science, INFORMS, vol. 34(4), pages 349-363, November.
    12. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    13. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    14. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    15. Hanif D. Sherali & Xiaomei Zhu, 2008. "Two-Stage Fleet Assignment Model Considering Stochastic Passenger Demands," Operations Research, INFORMS, vol. 56(2), pages 383-399, April.
    16. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    17. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    18. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    19. Saravanan Venkatachalam & Suresh Acharya & Kenji Oba & Yoshinari Nakayama, 2020. "Prescriptive Analytics for Swapping Aircraft Assignments at All Nippon Airways," Interfaces, INFORMS, vol. 50(2), pages 99-111, March.
    20. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:34:y:2000:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.