IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v31y1997i1p5-17.html
   My bibliography  Save this article

Controlled Optimization of Phases at an Intersection

Author

Listed:
  • Suvrajeet Sen

    (SIE Dept. of University of Arizona, Tucson, Arizona 85721)

  • K. Larry Head

    (SIE Dept. of University of Arizona, Tucson, Arizona 85721)

Abstract

This paper presents a general purpose algorithm for real-time traffic control at an intersection. Our methodology, based on dynamic programming, allows optimization of a variety of performance indices such as delay, stops and queue lengths. Furthermore, optimal phase sequencing is a direct by-product of this new approach. These features make the new methodology a powerful tool for intersection control. We demonstrate the usefulness of the approach by a simulation experiment in which our intersection control algorithm is interfaced with a well established simulation package called TRAF-NETSIM. Our study compares the controlled optimization of phases methodology with fully-actuated as well as semi-actuated control. We show that consistent reductions in delay may be possible by adopting the new algorithm.

Suggested Citation

  • Suvrajeet Sen & K. Larry Head, 1997. "Controlled Optimization of Phases at an Intersection," Transportation Science, INFORMS, vol. 31(1), pages 5-17, February.
  • Handle: RePEc:inm:ortrsc:v:31:y:1997:i:1:p:5-17
    DOI: 10.1287/trsc.31.1.5
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.31.1.5
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.31.1.5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiubin Bruce & Cao, Xiaowei & Wang, Changjun, 2017. "Dynamic optimal real-time algorithm for signals (DORAS): Case of isolated roadway intersections," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 433-446.
    2. Rinaldi, Marco & Tampère, Chris M.J., 2015. "An extended coordinate descent method for distributed anticipatory network traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 107-131.
    3. Lloret-Batlle, Roger & Jayakrishnan, R., 2016. "Envy-minimizing pareto efficient intersection control with brokered utility exchanges under user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 22-42.
    4. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    5. Lu, Ke & Du, Pingping & Cao, Jinde & Zou, Qiming & He, Tianjia & Huang, Wei, 2019. "A novel traffic signal split approach based on Explicit Model Predictive Control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 105-114.
    6. Rinaldi, Marco, 2018. "Controllability of transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 381-406.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:31:y:1997:i:1:p:5-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.