IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i1p53-70.html
   My bibliography  Save this article

Hidden Hamiltonian Cycle Recovery via Linear Programming

Author

Listed:
  • Vivek Bagaria

    (Department of Electrical Engineering, Stanford University, Stanford, California 94305)

  • Jian Ding

    (Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

  • David Tse

    (Department of Electrical Engineering, Stanford University, Stanford, California 94305)

  • Yihong Wu

    (Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06511)

  • Jiaming Xu

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

Abstract

We introduce the problem of hidden Hamiltonian cycle recovery, where there is an unknown Hamiltonian cycle in an n -vertex complete graph that needs to be inferred from noisy edge measurements. The measurements are independent and distributed according to P n for edges in the cycle and Q n otherwise. This formulation is motivated by a problem in genome assembly, where the goal is to order a set of contigs (genome subsequences) according to their positions on the genome using long-range linking measurements between the contigs. Computing the maximum likelihood estimate in this model reduces to a traveling salesman problem (TSP). Despite the NP-hardness of TSP, we show that a simple linear programming (LP) relaxation—namely, the fractional 2-factor (F2F) LP—recovers the hidden Hamiltonian cycle with high probability as n → ∞ provided that α n − log n → ∞ , where α n ≜ − 2 log ∫ d P n d Q n is the Rényi divergence of order 1 2 . This condition is information-theoretically optimal in the sense that, under mild distributional assumptions, α n ≥ ( 1 + o ( 1 ) ) log n is necessary for any algorithm to succeed regardless of the computational cost. Departing from the usual proof techniques based on dual witness construction, the analysis relies on the combinatorial characterization (in particular, the half-integrality) of the extreme points of the F2F polytope. Represented as bicolored multigraphs, these extreme points are further decomposed into simpler “blossom-type” structures for the large deviation analysis and counting arguments. Evaluation of the algorithm on real data shows improvements over existing approaches.

Suggested Citation

  • Vivek Bagaria & Jian Ding & David Tse & Yihong Wu & Jiaming Xu, 2020. "Hidden Hamiltonian Cycle Recovery via Linear Programming," Operations Research, INFORMS, vol. 68(1), pages 53-70, January.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:1:p:53-70
    DOI: 10.1287/opre.2019.1886
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1886
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Other publications TiSEM ea23cd70-a3b1-401a-aa3f-0, Tilburg University, School of Economics and Management.
    2. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    3. M. L. Balinski, 1965. "Integer Programming: Methods, Uses, Computations," Management Science, INFORMS, vol. 12(3), pages 253-313, November.
    4. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    5. Chen, Kun & Chen, Kehui & Müller, Hans-Georg & Wang, Jane-Ling, 2011. "Stringing High-Dimensional Data for Functional Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 275-284.
    6. Eden Chlamtac & Madhur Tulsiani, 2012. "Convex Relaxations and Integrality Gaps," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 139-169, Springer.
    7. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harold A. Hernández-Roig & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Functional Modeling of High-Dimensional Data: A Manifold Learning Approach," Mathematics, MDPI, vol. 9(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    2. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
    3. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
    4. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    5. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    6. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    7. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Frans Schalekamp & David P. Williamson & Anke van Zuylen, 2014. "2-Matchings, the Traveling Salesman Problem, and the Subtour LP: A Proof of the Boyd-Carr Conjecture," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 403-417, May.
    9. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    10. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    11. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 248(1), pages 33-51.
    12. Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
    13. Elena Nechita & Gloria Cerasela Crişan & Laszlo Barna Iantovics & Yitong Huang, 2020. "On the Resilience of Ant Algorithms. Experiment with Adapted MMAS on TSP," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    14. Mnich, Matthias & Mömke, Tobias, 2018. "Improved integrality gap upper bounds for traveling salesperson problems with distances one and two," European Journal of Operational Research, Elsevier, vol. 266(2), pages 436-457.
    15. Klerk, Etienne de, 2010. "Exploiting special structure in semidefinite programming: A survey of theory and applications," European Journal of Operational Research, Elsevier, vol. 201(1), pages 1-10, February.
    16. Claudio Gambella & Andrea Lodi & Daniele Vigo, 2018. "Exact Solutions for the Carrier–Vehicle Traveling Salesman Problem," Transportation Science, INFORMS, vol. 52(2), pages 320-330, March.
    17. Galli, Laura & Letchford, Adam N. & Miller, Sebastian J., 2018. "New valid inequalities and facets for the Simple Plant Location Problem," European Journal of Operational Research, Elsevier, vol. 269(3), pages 824-833.
    18. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    19. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    20. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:1:p:53-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.