IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v14y2012i2p262-278.html
   My bibliography  Save this article

The Impact of Dependent Service Times on Large-Scale Service Systems

Author

Listed:
  • Guodong Pang

    (Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, Pennsylvania 16802)

  • Ward Whitt

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

Abstract

This paper investigates the impact of dependence among successive service times on the transient and steady-state performance of a large-scale service system. This is done by studying an infinite-server queueing model with time-varying arrival rate, exploiting a recently established heavy-traffic limit, allowing dependence among the service times. This limit shows that the number of customers in the system at any time is approximately Gaussian, where the time-varying mean is unaffected by the dependence, but the time-varying variance is affected by the dependence. As a consequence, required staffing to meet customary quality-of-service targets in a large-scale service system with finitely many servers based on a normal approximation is primarily affected by dependence among the service times through this time-varying variance. This paper develops formulas and algorithms to quantify the impact of the dependence among the service times on that variance. The approximation applies directly to infinite-server models but also indirectly to associated finite-server models, exploiting approximations based on the peakedness (the ratio of the variance to the mean in the infinite-server model). Comparisons with simulations confirm that the approximations can be useful to assess the impact of the dependence.

Suggested Citation

  • Guodong Pang & Ward Whitt, 2012. "The Impact of Dependent Service Times on Large-Scale Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 262-278, April.
  • Handle: RePEc:inm:ormsom:v:14:y:2012:i:2:p:262-278
    DOI: 10.1287/msom.1110.0363
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1110.0363
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1110.0363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    2. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    3. William A. Massey & Ward Whitt, 1996. "Stationary-Process Approximations for the Nonstationary Erlang Loss Model," Operations Research, INFORMS, vol. 44(6), pages 976-983, December.
    4. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    5. P. A. Jacobs & P. A. W. Lewis, 1983. "Stationary Discrete Autoregressive‐Moving Average Time Series Generated By Mixtures," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(1), pages 19-36, January.
    6. Otis B. Jennings & Avishai Mandelbaum & William A. Massey & Ward Whitt, 1996. "Server Staffing to Meet Time-Varying Demand," Management Science, INFORMS, vol. 42(10), pages 1383-1394, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
    2. Song‐Hee Kim & Ward Whitt, 2014. "Choosing arrival process models for service systems: Tests of a nonhomogeneous Poisson process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 66-90, February.
    3. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    4. Chenguang (Allen) Wu & Achal Bassamboo & Ohad Perry, 2019. "Service System with Dependent Service and Patience Times," Management Science, INFORMS, vol. 65(3), pages 1151-1172, March.
    5. Ibrahim, Rouba & L’Ecuyer, Pierre & Shen, Haipeng & Thiongane, Mamadou, 2016. "Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers," European Journal of Operational Research, Elsevier, vol. 250(2), pages 480-492.
    6. Guodong Pang & Yuhang Zhou, 2018. "Two-parameter process limits for infinite-server queues with dependent service times via chaining bounds," Queueing Systems: Theory and Applications, Springer, vol. 88(1), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    2. Izady, Navid & Worthington, Dave, 2012. "Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments," European Journal of Operational Research, Elsevier, vol. 219(3), pages 531-540.
    3. J. G. Dai & Pengyi Shi, 2017. "A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management," Operations Research, INFORMS, vol. 65(2), pages 514-536, April.
    4. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    5. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    6. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    7. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    8. René Bekker & Paulien Koeleman, 2011. "Scheduling admissions and reducing variability in bed demand," Health Care Management Science, Springer, vol. 14(3), pages 237-249, September.
    9. William A. Massey & Jamol Pender, 2018. "Dynamic rate Erlang-A queues," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 127-164, June.
    10. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    11. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    12. Barış Ata & Xiaoshan Peng, 2020. "An Optimal Callback Policy for General Arrival Processes: A Pathwise Analysis," Operations Research, INFORMS, vol. 68(2), pages 327-347, March.
    13. Xi Chen & Dave Worthington, 2017. "Staffing of time-varying queues using a geometric discrete time modelling approach," Annals of Operations Research, Springer, vol. 252(1), pages 63-84, May.
    14. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    15. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    16. Itai Gurvich & Ohad Perry, 2012. "Overflow Networks: Approximations and Implications to Call Center Outsourcing," Operations Research, INFORMS, vol. 60(4), pages 996-1009, August.
    17. Guodong Pang & Ward Whitt, 2009. "Service Interruptions in Large-Scale Service Systems," Management Science, INFORMS, vol. 55(9), pages 1499-1512, September.
    18. Yunan Liu & Ward Whitt, 2012. "Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals," Operations Research, INFORMS, vol. 60(6), pages 1551-1564, December.
    19. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    20. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:14:y:2012:i:2:p:262-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.