IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i8p5958-5979.html
   My bibliography  Save this article

Diffusion Approximations for a Class of Sequential Experimentation Problems

Author

Listed:
  • Victor F. Araman

    (Olayan School of Business, American University of Beirut, Beirut 1107 2020, Lebanon)

  • René A. Caldentey

    (Booth School of Business, The University of Chicago, Chicago, Illinois 60637)

Abstract

A decision maker (DM) must choose an action in order to maximize a reward function that depends on the DM’s action as well as on an unknown parameter Θ. The DM can delay taking the action in order to experiment and gather additional information on Θ. We model the problem using a Bayesian sequential experimentation framework and use dynamic programming and diffusion-asymptotic analysis to solve it. For that, we consider environments in which the average number of experiments that is conducted per unit of time is large and the informativeness of each individual experiment is low. Under such regimes, we derive a diffusion approximation for the sequential experimentation problem, which provides a number of important insights about the nature of the problem and its solution. First, it reveals that the problems of (i) selecting the optimal sequence of experiments to use and (ii) deciding the optimal time when to stop experimenting decouple and can be solved independently. Second, it shows that an optimal experimentation policy is one that chooses the experiment that maximizes the instantaneous volatility of the belief process. Third, the diffusion approximation provides a more mathematically malleable formulation that we can solve in closed form and suggests efficient heuristics for the nonasympototic regime. Our solution method also shows that the complexity of the problem grows only quadratically with the cardinality of the set of actions from which the decision maker can choose. We illustrate our methodology and results using a concrete application in the context of assortment selection and new product introduction. Specifically, we study the problem of a seller who wants to select an optimal assortment of products to launch into the marketplace and is uncertain about consumers’ preferences. Motivated by emerging practices in e-commerce, we assume that the seller is able to use a crowd voting system to learn these preferences before a final assortment decision is made. In this context, we undertake an extensive numerical analysis to assess the value of learning and demonstrate the effectiveness and robustness of the heuristics derived from the diffusion approximation.

Suggested Citation

  • Victor F. Araman & René A. Caldentey, 2022. "Diffusion Approximations for a Class of Sequential Experimentation Problems," Management Science, INFORMS, vol. 68(8), pages 5958-5979, August.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:8:p:5958-5979
    DOI: 10.1287/mnsc.2021.4195
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4195
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Bora Keskin & John R. Birge, 2019. "Dynamic Selling Mechanisms for Product Differentiation and Learning," Operations Research, INFORMS, vol. 67(4), pages 1069-1089, July.
    2. J. Michael Harrison & Nur Sunar, 2015. "Investment Timing with Incomplete Information and Multiple Means of Learning," Operations Research, INFORMS, vol. 63(2), pages 442-457, April.
    3. Patrick Bolton & Christopher Harris, 1999. "Strategic Experimentation," Econometrica, Econometric Society, vol. 67(2), pages 349-374, March.
    4. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    5. Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
    6. Yiangos Papanastasiou & Kostas Bimpikis & Nicos Savva, 2018. "Crowdsourcing Exploration," Management Science, INFORMS, vol. 64(4), pages 1727-1746, April.
    7. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    8. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    9. Hamsa Bastani & Mohsen Bayati & Khashayar Khosravi, 2021. "Mostly Exploration-Free Algorithms for Contextual Bandits," Management Science, INFORMS, vol. 67(3), pages 1329-1349, March.
    10. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    11. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.
    12. Jay Bartroff & Matthew Finkelman & Tze Lai, 2008. "Modern Sequential Analysis and Its Applications to Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 473-486, September.
    13. Matthew Finkelman, 2008. "On Using Stochastic Curtailment to Shorten the SPRT in Sequential Mastery Testing," Journal of Educational and Behavioral Statistics, , vol. 33(4), pages 442-463, December.
    14. Brezzi, Monica & Lai, Tze Leung, 2002. "Optimal learning and experimentation in bandit problems," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 87-108, November.
    15. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    16. Stephen E. Chick & Peter Frazier, 2012. "Sequential Sampling with Economics of Selection Procedures," Management Science, INFORMS, vol. 58(3), pages 550-569, March.
    17. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    18. Nur Sunar & John R. Birge & Sinit Vitavasiri, 2019. "Optimal Dynamic Product Development and Launch for a Network of Customers," Operations Research, INFORMS, vol. 67(3), pages 770-790, May.
    19. Randall A. Lewis & Justin M. Rao, 2015. "The Unfavorable Economics of Measuring the Returns to Advertising," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1941-1973.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
    2. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    3. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    4. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    5. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    6. Stephen Chick & Martin Forster & Paolo Pertile, 2017. "A Bayesian decision theoretic model of sequential experimentation with delayed response," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1439-1462, November.
    7. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    8. Gur, Yonatan & Macnamara, Gregory & Saban, Daniela, 2020. "On the Disclosure of Promotion Value in Platforms with Learning Sellers," Research Papers 3865, Stanford University, Graduate School of Business.
    9. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    10. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    11. Ruben Geer & Arnoud V. Boer & Christopher Bayliss & Christine S. M. Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbjørn Nilsen Ris, 2019. "Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(3), pages 185-203, June.
    12. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    13. Ningyuan Chen & Guillermo Gallego, 2021. "Nonparametric Pricing Analytics with Customer Covariates," Operations Research, INFORMS, vol. 69(3), pages 974-984, May.
    14. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    15. Gah-Yi Ban & N. Bora Keskin, 2021. "Personalized Dynamic Pricing with Machine Learning: High-Dimensional Features and Heterogeneous Elasticity," Management Science, INFORMS, vol. 67(9), pages 5549-5568, September.
    16. Ruben van de Geer & Arnoud V. den Boer & Christopher Bayliss & Christine Currie & Andria Ellina & Malte Esders & Alwin Haensel & Xiao Lei & Kyle D. S. Maclean & Antonio Martinez-Sykora & Asbj{o}rn Nil, 2018. "Dynamic Pricing and Learning with Competition: Insights from the Dynamic Pricing Challenge at the 2017 INFORMS RM & Pricing Conference," Papers 1804.03219, arXiv.org.
    17. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.
    18. Denis Sauré & Assaf Zeevi, 2013. "Optimal Dynamic Assortment Planning with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 387-404, July.
    19. Ilan Lobel, 2021. "Revenue Management and the Rise of the Algorithmic Economy," Management Science, INFORMS, vol. 67(9), pages 5389-5398, September.
    20. Ningyuan Chen & Guillermo Gallego, 2018. "A Primal-dual Learning Algorithm for Personalized Dynamic Pricing with an Inventory Constraint," Papers 1812.09234, arXiv.org, revised Oct 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:8:p:5958-5979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.