IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v41y1995i6p1107-1116.html
   My bibliography  Save this article

Sensitivity to the Service-Time Distribution in the Nonstationary Erlang Loss Model

Author

Listed:
  • Jimmie L. Davis

    (School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • William A. Massey

    (AT&T Bell Laboratories, Room 2C-120, Murray Hill, New Jersey 07974-0636)

  • Ward Whitt

    (AT&T Bell Laboratories, Room 2C-178, Murray Hill, New Jersey 07974-0636)

Abstract

The stationary Erlang loss model is a classic example of an insensitive queueing system: the steady-state distribution of the number of busy servers depends on the service-time distribution only through its mean. However, when the arrival process is a nonstationary Poisson process, the insensitivity property is lost. We develop a simple, effective numerical algorithm for the M t /PH/s/0 model with two service phases and a nonhomogeneous Poisson arrival process, and apply it to show that the time-dependent blocking probability with nonstationary input can be strongly influenced by the service-time distribution beyond the mean. With sinusoidal arrival rates, the peak blocking probability typically increases as the service-time distribution gets less variable. The influence of the service-time distribution, including this seemingly anomalous behavior, can be understood and predicted from the modified-offered-load and stationary-peakedness approximations, which exploit exact results for related infinite-server models.

Suggested Citation

  • Jimmie L. Davis & William A. Massey & Ward Whitt, 1995. "Sensitivity to the Service-Time Distribution in the Nonstationary Erlang Loss Model," Management Science, INFORMS, vol. 41(6), pages 1107-1116, June.
  • Handle: RePEc:inm:ormnsc:v:41:y:1995:i:6:p:1107-1116
    DOI: 10.1287/mnsc.41.6.1107
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.41.6.1107
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.41.6.1107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ward Whitt, 2006. "Sensitivity of Performance in the Erlang-A Queueing Model to Changes in the Model Parameters," Operations Research, INFORMS, vol. 54(2), pages 247-260, April.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Yunan Liu & Ward Whitt, 2012. "Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals," Operations Research, INFORMS, vol. 60(6), pages 1551-1564, December.
    4. Md Asaduzzaman & Thierry Chaussalet & Nicola Robertson, 2010. "A loss network model with overflow for capacity planning of a neonatal unit," Annals of Operations Research, Springer, vol. 178(1), pages 67-76, July.
    5. Andrew M. Ross, 2009. "Distribution sensitivity in a highway flow model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 769-786, November.
    6. Izady, N. & Worthington, D., 2011. "Approximate analysis of non-stationary loss queues and networks of loss queues with general service time distributions," European Journal of Operational Research, Elsevier, vol. 213(3), pages 498-508, September.
    7. Arnoud Bruin & A. Rossum & M. Visser & G. Koole, 2007. "Modeling the emergency cardiac in-patient flow: an application of queuing theory," Health Care Management Science, Springer, vol. 10(2), pages 125-137, June.
    8. A. Bruin & R. Bekker & L. Zanten & G. Koole, 2010. "Dimensioning hospital wards using the Erlang loss model," Annals of Operations Research, Springer, vol. 178(1), pages 23-43, July.
    9. Ward Whitt, 1999. "Partitioning Customers into Service Groups," Management Science, INFORMS, vol. 45(11), pages 1579-1592, November.
    10. Samantha L. Zimmerman & Alexander R. Rutherford & Alexa Waall & Monica Norena & Peter Dodek, 2023. "A queuing model for ventilator capacity management during the COVID-19 pandemic," Health Care Management Science, Springer, vol. 26(2), pages 200-216, June.
    11. R. Bekker & A. Bruin, 2010. "Time-dependent analysis for refused admissions in clinical wards," Annals of Operations Research, Springer, vol. 178(1), pages 45-65, July.
    12. René Bekker & Paulien Koeleman, 2011. "Scheduling admissions and reducing variability in bed demand," Health Care Management Science, Springer, vol. 14(3), pages 237-249, September.
    13. Vyacheslav Abramov, 2006. "Analysis of multiserver retrial queueing system: A martingale approach and an algorithm of solution," Annals of Operations Research, Springer, vol. 141(1), pages 19-50, January.
    14. Ward Whitt, 1999. "Improving Service by Informing Customers About Anticipated Delays," Management Science, INFORMS, vol. 45(2), pages 192-207, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:41:y:1995:i:6:p:1107-1116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.