IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v40y1994i12p1690-1704.html
   My bibliography  Save this article

The Strategic Use of Capacity Slack in the Economic Lot Scheduling Problem with Random Demand

Author

Listed:
  • Karla E. Bourland

    (The Amos Tuck School of Business Administration, Dartmouth College, Hanover, New Hampshire 03755)

  • Candace A. Yano

    (Department of Industrial Engineering and Operations Research, The University of California, Berkeley, California 94720)

Abstract

Growing interest in designing systems with capacity slack as one form of flexibility raises many questions about its use and its usefulness. In the framework of the economic lot scheduling problem with stochastic demand, we develop on optimization-based model that considers capacity slack, safety stock, and overtime explicitly, and has the objective of minimizing the expected cost per unit time of inventory, overtime, and, where applicable, setup costs. The solution is a continuous-time production plan that consists of a time-dependent inventory trajectory for each of the parts, including the placement of planned idle time in the schedule. We consider schedule stability to be desirable because of potential effects on upstream and downstream operations in multistage production settings. Thus, the plan also has certain characteristics that contribute to achieving stability. Our results on the relative merits of capacity slack and safety stock indicate that capacity slack in the form of planned idle time is not a cost-effective hedge against demand uncertainty in this context. Thus, it is essential that management carefully identify and evaluate other reasons for including idle time in a plan, and use the idle time effectively. For managers who face situations not fully represented by our model, this paper provides analytic results that will guide them in the placement of planned idle time and the choice of safety stock levels.

Suggested Citation

  • Karla E. Bourland & Candace A. Yano, 1994. "The Strategic Use of Capacity Slack in the Economic Lot Scheduling Problem with Random Demand," Management Science, INFORMS, vol. 40(12), pages 1690-1704, December.
  • Handle: RePEc:inm:ormnsc:v:40:y:1994:i:12:p:1690-1704
    DOI: 10.1287/mnsc.40.12.1690
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.40.12.1690
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.40.12.1690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smits, Sanne R. & Wagner, Michael & G. de Kok, Ton, 2004. "Determination of an order-up-to policy in the stochastic economic lot scheduling model," International Journal of Production Economics, Elsevier, vol. 90(3), pages 377-389, August.
    2. Winands, E.M.M. & Adan, I.J.B.F. & van Houtum, G.J., 2011. "The stochastic economic lot scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 210(1), pages 1-9, April.
    3. Hishamuddin, H. & Sarker, R.A. & Essam, D., 2012. "A disruption recovery model for a single stage production-inventory system," European Journal of Operational Research, Elsevier, vol. 222(3), pages 464-473.
    4. Brander, Par & Forsberg, Rolf, 2006. "Determination of safety stocks for cyclic schedules with stochastic demands," International Journal of Production Economics, Elsevier, vol. 104(2), pages 271-295, December.
    5. Zied Bahroun & Nidhal Belgacem, 2019. "Determination of dynamic safety stocks for cyclic production schedules," Operations Management Research, Springer, vol. 12(1), pages 62-93, June.
    6. Fredendall, Lawrence D. & Ojha, Divesh & Wayne Patterson, J., 2010. "Concerning the theory of workload control," European Journal of Operational Research, Elsevier, vol. 201(1), pages 99-111, February.
    7. Gonçalves, João N.C. & Sameiro Carvalho, M. & Cortez, Paulo, 2020. "Operations research models and methods for safety stock determination: A review," Operations Research Perspectives, Elsevier, vol. 7(C).
    8. Wagner, Michael & Smits, Sanne R., 2004. "A local search algorithm for the optimization of the stochastic economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 90(3), pages 391-402, August.
    9. Briskorn, Dirk & Zeise, Philipp & Packowski, Josef, 2016. "Quasi-fixed cyclic production schemes for multiple products with stochastic demand," European Journal of Operational Research, Elsevier, vol. 252(1), pages 156-169.
    10. McGee, Victor E. & Pyke, David F., 1996. "Periodic production scheduling at a fastener manufacturer," International Journal of Production Economics, Elsevier, vol. 46(1), pages 65-87, December.
    11. Kamath B, Narasimha & Bhattacharya, Subir, 2007. "Lead time minimization of a multi-product, single-processor system: A comparison of cyclic policies," International Journal of Production Economics, Elsevier, vol. 106(1), pages 28-40, March.
    12. Lopez de Haro, Santiago & Gershwin, Stanley B. & Rosenfield, Donald B., 2009. "Schedule evaluation in unstable manufacturing environments," International Journal of Production Economics, Elsevier, vol. 121(1), pages 183-194, September.
    13. Craighead, Christopher W. & Patterson, J. Wayne & Fredendall, Lawrence D., 2001. "Protective capacity positioning: Impact on manufacturing cell performance," European Journal of Operational Research, Elsevier, vol. 134(2), pages 425-438, October.
    14. Sox, Charles R. & Jackson, Peter L. & Bowman, Alan & Muckstadt, John A., 1999. "A review of the stochastic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 62(3), pages 181-200, September.
    15. Vaughan, Timothy S., 2007. "Cyclical schedules vs. dynamic sequencing: Replenishment dynamics and inventory efficiency," International Journal of Production Economics, Elsevier, vol. 107(2), pages 518-527, June.
    16. Donald D. Eisenstein, 2005. "Recovering Cyclic Schedules Using Dynamic Produce-Up-To Policies," Operations Research, INFORMS, vol. 53(4), pages 675-688, August.
    17. Dirk Briskorn & Philipp Zeise, 2019. "A cyclic production scheme for the synchronized and integrated two-level lot-sizing and scheduling problem with no-wait restrictions and stochastic demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 895-942, December.
    18. Rappold, James A. & Yoho, Keenan D., 2014. "Setting safety stocks for stable rotation cycle schedules," International Journal of Production Economics, Elsevier, vol. 156(C), pages 146-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:40:y:1994:i:12:p:1690-1704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.