IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v37y2007i2p120-132.html
   My bibliography  Save this article

Schlumberger Uses Simulation in Bidding and Executing Land Seismic Surveys

Author

Listed:
  • Peter Mullarkey

    (NetQoS Inc., 6504 Bridge Point Parkway, Suite 501, Austin, Texas 78730)

  • Grant Butler

    (Grant Geophysical Inc., 21 Murranji Street, Hawker, Australian Capital Territory, Australia 2614)

  • Srinagesh Gavirneni

    (Johnson Graduate School of Management, Cornell University, Ithaca, New York 14853)

  • Douglas Morrice

    (McCombs School of Business, University of Texas at Austin, Austin, Texas 78712-1175)

Abstract

Schlumberger and its competitors use seismic surveying, the process of mapping subterranean rock formations with reflected sound waves, as an important first step in identification and recovery of oil and gas reserves. This complicated logistical operation commonly lasts two to six months, covers hundreds of square miles, employs scores of people, and utilizes a large variety of equipment. To win these jobs, Schlumberger participates in a closed bidding process organized by the oil companies. To succeed, it must quickly and accurately estimate the costs of seismic surveys. We developed a simulation tool to evaluate the impact of crew sizes (people and equipment), survey area, geographical region, and weather conditions on survey costs and durations. Schlumberger uses it to obtain and profit from a larger portion of the global seismic survey market. We demonstrated cost savings to clients of about $2 million on four surveys. Based on the number of surveys that Schlumberger conducts each year, it should save about $1.5 to $3 million each year.

Suggested Citation

  • Peter Mullarkey & Grant Butler & Srinagesh Gavirneni & Douglas Morrice, 2007. "Schlumberger Uses Simulation in Bidding and Executing Land Seismic Surveys," Interfaces, INFORMS, vol. 37(2), pages 120-132, April.
  • Handle: RePEc:inm:orinte:v:37:y:2007:i:2:p:120-132
    DOI: 10.1287/inte.1060.0230
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1060.0230
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1060.0230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    2. Michel Gendreau & Gilbert Laporte & Frédéric Semet, 1997. "The Covering Tour Problem," Operations Research, INFORMS, vol. 45(4), pages 568-576, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    2. Ivan Contreras & Moayad Tanash & Navneet Vidyarthi, 2017. "Exact and heuristic approaches for the cycle hub location problem," Annals of Operations Research, Springer, vol. 258(2), pages 655-677, November.
    3. Jürgen Branke & Stephen E. Chick & Christian Schmidt, 2007. "Selecting a Selection Procedure," Management Science, INFORMS, vol. 53(12), pages 1916-1932, December.
    4. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    5. Sigrún Andradóttir & Seong‐Hee Kim, 2010. "Fully sequential procedures for comparing constrained systems via simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(5), pages 403-421, August.
    6. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    7. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    8. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    9. Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
    10. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    11. Coelho, Leandro C. & Laporte, Gilbert, 2014. "Improved solutions for inventory-routing problems through valid inequalities and input ordering," International Journal of Production Economics, Elsevier, vol. 155(C), pages 391-397.
    12. Christian Artigues & Nicolas Jozefowiez & Boadu M. Sarpong, 2018. "Column generation algorithms for bi-objective combinatorial optimization problems with a min–max objective," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 117-142, June.
    13. Keisuke Murakami, 2018. "Iterative Column Generation Algorithm for Generalized Multi-Vehicle Covering Tour Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-22, August.
    14. Leticia Vargas & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2017. "A dynamic programming operator for tour location problems applied to the covering tour problem," Journal of Heuristics, Springer, vol. 23(1), pages 53-80, February.
    15. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    16. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    17. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    18. Gutjahr, Walter J. & Katzensteiner, Stefan & Reiter, Peter & Stummer, Christian & Denk, Michaela, 2010. "Multi-objective decision analysis for competence-oriented project portfolio selection," European Journal of Operational Research, Elsevier, vol. 205(3), pages 670-679, September.
    19. Moreno Perez, Jose A. & Marcos Moreno-Vega, J. & Rodriguez Martin, Inmaculada, 2003. "Variable neighborhood tabu search and its application to the median cycle problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 365-378, December.
    20. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:37:y:2007:i:2:p:120-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.