IDEAS home Printed from https://ideas.repec.org/a/igg/joris0/v7y2016i2p39-61.html
   My bibliography  Save this article

A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem

Author

Listed:
  • P. Senthil Kumar

    (PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu, India)

  • R. Jahir Hussain

    (PG & Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu, India)

Abstract

In solving real life assignment problem we often face the state of uncertainty as well as hesitation due to various uncontrollable factors. To deal with uncertainty and hesitation many authors have suggested the intuitionistic fuzzy representations for the data. So, in this paper, the authors consider the assignment problem having uncertainty and hesitation in cost/time/profit. They formulate the problem and utilize triangular intuitionistic fuzzy numbers (TIFNs) to deal with uncertainty and hesitation. The authors propose a new method called PSK (P.Senthil Kumar) method for finding the intuitionistic fuzzy optimal cost/time/profit for fully intuitionistic fuzzy assignment problem (FIFAP). The proposed method gives the optimal object value in terms of TIFN. The main advantage of this method is computationally very simple, easy to understand. Finally the effectiveness of the proposed method is illustrated by means of a numerical example which is followed by graphical representation of the finding.

Suggested Citation

  • P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.
  • Handle: RePEc:igg:joris0:v:7:y:2016:i:2:p:39-61
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJORIS.2016040103
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Monalisha Pattnaik, 2015. "Decision Making Approach to Fuzzy Linear Programming (FLP) Problems with Post Optimal Analysis," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 6(4), pages 75-90, October.
    3. Seyed Hadi Nasseri & Ali Ebrahimnejad, 2011. "Sensitivity Analysis on Linear Programming Problems with Trapezoidal Fuzzy Variables," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 2(2), pages 22-39, April.
    4. P. Senthil Kumar & R. Jahir Hussain, 2016. "Computationally simple approach for solving fully intuitionistic fuzzy real life transportation problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 90-101, December.
    5. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    6. Ali Ebrahimnejad & Seyed Hadi Nasseri & Sayyed Mehdi Mansourzadeh, 2011. "Bounded Primal Simplex Algorithm for Bounded Linear Programming with Fuzzy Cost Coefficients," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 2(1), pages 96-120, January.
    7. Debashree Guha & Debjani Chakraborty, 2010. "A Theoretical Development of Distance Measure for Intuitionistic Fuzzy Numbers," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2010, pages 1-25, March.
    8. Sarbjit Singh, 2012. "Note on Assignment Algorithm with Easy Method of Drawing Lines to Cover All Zeros," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 3(3), pages 87-97, July.
    9. Amit Kumar & Amarpreet Kaur, 2011. "Methods for Solving Fully Fuzzy Transportation Problems Based on Classical Transportation Methods," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 2(4), pages 52-71, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    2. P. Senthil Kumar, 2018. "Linear Programming Approach for Solving Balanced and Unbalanced Intuitionistic Fuzzy Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(2), pages 73-100, April.
    3. P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
    4. Zhi-Ming Chen & Cheng-Hsiung Lee & Hung-Lin Lai, 2022. "Speedup the optimization of maximal closure of a node-weighted directed acyclic graph," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1413-1437, December.
    5. P. Senthil Kumar, 2018. "A Simple and Efficient Algorithm for Solving Type-1 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(3), pages 90-122, July.
    6. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    7. P.Senthil Kumar, 2018. "PSK Method for Solving Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 7(4), pages 62-99, October.
    8. Saeedeh Bazari & Alireza Pooya & Omid Soleimani Fard & Pardis Roozkhosh, 2023. "Modeling and solving the problem of scheduling university exams in terms of new constraints on the conflicts of professors' exams and the concurrence of exams with common questions," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 877-915, June.
    9. P. Senthil Kumar, 2019. "Intuitionistic fuzzy solid assignment problems: a software-based approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 661-675, August.
    10. P. Senthil Kumar, 2020. "Intuitionistic fuzzy zero point method for solving type-2 intuitionistic fuzzy transportation problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 37(3), pages 418-451.
    11. P. Senthil Kumar, 2018. "A note on 'a new approach for solving intuitionistic fuzzy transportation problem of type-2'," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 29(1), pages 102-129.
    12. P. Senthil Kumar, 2019. "PSK Method for Solving Mixed and Type-4 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 10(2), pages 20-53, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Senthil Kumar, 2018. "Linear Programming Approach for Solving Balanced and Unbalanced Intuitionistic Fuzzy Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(2), pages 73-100, April.
    2. P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
    3. P. Senthil Kumar, 2019. "PSK Method for Solving Mixed and Type-4 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 10(2), pages 20-53, April.
    4. P. Senthil Kumar, 2016. "PSK Method for Solving Type-1 and Type-3 Fuzzy Transportation Problems," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 5(4), pages 121-146, October.
    5. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    6. P.Senthil Kumar, 2018. "PSK Method for Solving Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 7(4), pages 62-99, October.
    7. P. Senthil Kumar, 2018. "A note on 'a new approach for solving intuitionistic fuzzy transportation problem of type-2'," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 29(1), pages 102-129.
    8. P. Senthil Kumar, 2018. "A Simple and Efficient Algorithm for Solving Type-1 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(3), pages 90-122, July.
    9. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    10. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.
    11. Boris Pérez-Cañedo & José Luis Verdegay & Eduardo René Concepción-Morales & Alejandro Rosete, 2020. "Lexicographic Methods for Fuzzy Linear Programming," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    12. P. Senthil Kumar, 2019. "Intuitionistic fuzzy solid assignment problems: a software-based approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 661-675, August.
    13. Z. A. M. S. Juman & Salama A. Mostafa & A. P. Batuwita & Ali AlArjani & Md Sharif Uddin & Mustafa Musa Jaber & Teg Alam & El-Awady Attia, 2022. "Close Interval Approximation of Pentagonal Fuzzy Numbers for Interval Data-Based Transportation Problems," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    14. Balasundaram Baranidharan & Ieva Meidute-Kavaliauskiene & Ghanshaym S. Mahapatra & Renata Činčikaitė, 2022. "Assessing the Sustainability of the Prepandemic Impact on Fuzzy Traveling Sellers Problem with a New Fermatean Fuzzy Scoring Function," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    15. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    16. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    17. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    18. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    19. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    20. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:joris0:v:7:y:2016:i:2:p:39-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.