IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7860214.html
   My bibliography  Save this article

A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System

Author

Listed:
  • Qiao Zhang
  • Gang Li

Abstract

This paper introduces a game theory approach to implement power flow distribution mission for a fuel cell/battery hybrid system considering uncertain power information. To fully describe the vying interaction relationship between the fuel cell and the battery, we design the power distribution problem as a noncooperative game problem, in which the fuel cell and the battery are deemed to be two interactional players, and each one chooses proper amount of power supply to maximize its own optimization function relying on the other chosen. Different from all previous research work in the published papers, the power demand information of the adopted driving cycle is assumed to be absolutely known. In this paper, we discuss the case that when the power demand is uncertain how the players act and the Nash Equilibrium can be effectively achieved. Three original contributions are made. First, we develop the utility function for each player taking into account the uncertain behavior of the power demand due to inaccurate prediction of driving cycle. Second, an iterative algorithm with a fuzzy logical controller for correction is proposed to reduce the influence of uncertain power demand information on the decisions of the players. Finally, the effectiveness is validated by a comparison simulation test.

Suggested Citation

  • Qiao Zhang & Gang Li, 2019. "A Game Theory Energy Management Strategy for a Fuel Cell/Battery Hybrid Energy Storage System," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, January.
  • Handle: RePEc:hin:jnlmpe:7860214
    DOI: 10.1155/2019/7860214
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7860214.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7860214.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7860214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    2. Yang Gao & Changhong Liu & Yuan Liang & Sadegh Kouhestani Hamed & Fuwei Wang & Bo Bi, 2022. "Minimizing Energy Consumption and Powertrain Cost of Fuel Cell Hybrid Vehicles with Consideration of Different Driving Cycles and SOC Ranges," Energies, MDPI, vol. 15(17), pages 1-12, August.
    3. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7860214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.