IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1827-d114531.html
   My bibliography  Save this article

Changes in Service and Associated Ridership Impacts near a New Light Rail Transit Line

Author

Listed:
  • Jeongwoo Lee

    (College of Architecture and Design, University of Ulsan, Ulsan City 44610, Korea)

  • Marlon Boarnet

    (Sol Price School of Public Policy, University of Southern California, Los Angeles, CA 90089, USA)

  • Douglas Houston

    (Department of Urban Planning and Public Policy, University of California, Irvine, CA 92697, USA)

  • Hilary Nixon

    (Department of Urban & Regional Planning, San Jose State University, San Jose, CA 95192, USA)

  • Steven Spears

    (School of Urban and Regional Planning, University of Iowa, Iowa City, IA 52242, USA)

Abstract

Los Angeles (LA), for many years a city with limited rail transit, is substantially expanding its public transit system. This paradigm change in transportation policy and investment creates new requirements for monitoring. One area needing evaluation is whether new, high quality transit options, such as light rail, near existing transit services increase sustainable transportation mode shares and reduce car travel. Few studies have explored light rail’s role as a catalyst to increase overall transit use and achieve sustainability goals within an auto-oriented city like LA. Metro’s data show that trips taken on its bus and rail system dropped overall by 10.5% between 2009 and 2016, but its rail ridership grew 21% during the same period due to the debut of the Gold Line and Expo Line extensions. We analyze changes to bus service and associated ridership impacts that resulted from the opening of these two LRT lines in LA. The immediate effect of the city’s bus service changes along the Gold Line light rail extension appear to be associated with a net “bus plus rail” ridership decline in that corridor. In contrast, the Expo Line corridor experienced an initial increase in ridership during the two years immediately after its opening, possibly because the bus service was not reduced by the same magnitude as along the Gold Line extension. Our findings indicate that changes in bus service made to coincide with the introduction of new light rail transit (LRT) can negatively affect the overall transit ridership in the corridor. Planners and policy makers should closely monitor changes in bus service and ridership associated with new rail transit to ensure investments results in an overall net increase in more sustainable travel.

Suggested Citation

  • Jeongwoo Lee & Marlon Boarnet & Douglas Houston & Hilary Nixon & Steven Spears, 2017. "Changes in Service and Associated Ridership Impacts near a New Light Rail Transit Line," Sustainability, MDPI, vol. 9(10), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1827-:d:114531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Werner, Carol M. & Brown, Barbara B. & Tribby, Calvin P. & Tharp, Doug & Flick, Kristi & Miller, Harvey J. & Smith, Ken R. & Jensen, Wyatt, 2016. "Evaluating the attractiveness of a new light rail extension: Testing simple change and displacement change hypotheses," Transport Policy, Elsevier, vol. 45(C), pages 15-23.
    2. Cao, Xinyu (Jason) & Schoner, Jessica, 2014. "The influence of light rail transit on transit use: An exploration of station area residents along the Hiawatha line in Minneapolis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 134-143.
    3. Miaoyi Li & Lei Dong & Zhenjiang Shen & Wei Lang & Xinyue Ye, 2017. "Examining the Interaction of Taxi and Subway Ridership for Sustainable Urbanization," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    4. Chakrabarti, Sandip, 2017. "How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in Los Angeles," Transport Policy, Elsevier, vol. 54(C), pages 80-89.
    5. Lane, Bradley W., 2010. "The relationship between recent gasoline price fluctuations and transit ridership in major US cities," Journal of Transport Geography, Elsevier, vol. 18(2), pages 214-225.
    6. Moore, James E., 1993. "Ridership and cost on the Long Beach-Los Angeles Blue Line Train," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(2), pages 139-152, April.
    7. Christopher Kennedy & Eric Miller & Amer Shalaby & Heather Maclean & Jesse Coleman, 2005. "The Four Pillars of Sustainable Urban Transportation," Transport Reviews, Taylor & Francis Journals, vol. 25(4), pages 393-414, March.
    8. Henao, Alejandro & Piatkowski, Daniel & Luckey, Kara S. & Nordback, Krista & Marshall, Wesley E. & Krizek, Kevin J., 2015. "Sustainable transportation infrastructure investments and mode share changes: A 20-year background of Boulder, Colorado," Transport Policy, Elsevier, vol. 37(C), pages 64-71.
    9. Chuan Ding & Donggen Wang & Xiaolei Ma & Haiying Li, 2016. "Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    10. Zhang, Dapeng & Wang, Xiaokun (Cara), 2014. "Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC," Journal of Transport Geography, Elsevier, vol. 41(C), pages 107-115.
    11. Jiechao Zhang & Xuedong Yan & Meiwu An & Li Sun, 2017. "The Impact of Beijing Subway’s New Fare Policy on Riders’ Attitude, Travel Pattern and Demand," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    12. Steven Spears & Marlon G Boarnet & Douglas Houston, 2017. "Driving reduction after the introduction of light rail transit: Evidence from an experimental-control group evaluation of the Los Angeles Expo Line," Urban Studies, Urban Studies Journal Limited, vol. 54(12), pages 2780-2799, September.
    13. Dohyung Kim & Yongjin Ahn & Simon Choi & Kwangkoo Kim, 2016. "Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    2. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    3. Ciyun Lin & Kang Wang & Dayong Wu & Bowen Gong, 2020. "Passenger Flow Prediction Based on Land Use around Metro Stations: A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    4. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    5. Cao, Xinyu Jason, 2019. "Examining the effect of the Hiawatha LRT on auto use in the Twin Cities," Transport Policy, Elsevier, vol. 81(C), pages 284-292.
    6. Werner, Carol M. & Brown, Barbara B. & Tribby, Calvin P. & Tharp, Doug & Flick, Kristi & Miller, Harvey J. & Smith, Ken R. & Jensen, Wyatt, 2016. "Evaluating the attractiveness of a new light rail extension: Testing simple change and displacement change hypotheses," Transport Policy, Elsevier, vol. 45(C), pages 15-23.
    7. Diao, Mi, 2019. "Towards sustainable urban transport in Singapore: Policy instruments and mobility trends," Transport Policy, Elsevier, vol. 81(C), pages 320-330.
    8. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    9. Qihao Liu & Yuzheng Liu & Chia-Lin Chen & Enrica Papa & Yantao Ling & Mengqiu Cao, 2023. "Is It Possible to Compete With Car Use? How Buses Can Facilitate Sustainable Transport," Urban Planning, Cogitatio Press, vol. 8(3), pages 69-83.
    10. Chaoren Lu, 2014. "The role of sustainability policy in influencing service innovation. a case study of Changzhou BRT system," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2014(3), pages 167-168.
    11. González-Díaz, Manuel & Montoro-Sánchez, Ángeles, 2011. "Some lessons from incentive theory: Promoting quality in bus transport," Transport Policy, Elsevier, vol. 18(2), pages 299-306, March.
    12. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    13. Egu, Oscar & Bonnel, Patrick, 2021. "Medium-term public transit route ridership forecasting: What, how and why? A case study in Lyon," Transport Policy, Elsevier, vol. 105(C), pages 124-133.
    14. Vigren, Andreas & Pyddoke, Roger, 2020. "The impact on bus ridership of passenger incentive contracts in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 144-159.
    15. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    16. Lee, Hasik & Park, Ho-Chul & Kho, Seung-Young & Kim, Dong-Kyu, 2019. "Assessing transit competitiveness in Seoul considering actual transit travel times based on smart card data," Journal of Transport Geography, Elsevier, vol. 80(C).
    17. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    19. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    20. Magalhães, David José Ahouagi Vaz de & Rivera-Gonzalez, Carlos, 2021. "Car users’ attitudes towards an enhanced bus system to mitigate urban congestion in a developing country," Transport Policy, Elsevier, vol. 110(C), pages 452-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1827-:d:114531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.