IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p895-d77415.html
   My bibliography  Save this article

Temporal Effects of Environmental Characteristics on Urban Air Temperature: The Influence of the Sky View Factor

Author

Listed:
  • Jaehyun Ha

    (Department of Urban Planning and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea)

  • Sugie Lee

    (Department of Urban Planning and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea)

  • Cheolyeong Park

    (Department of Urban Planning and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea)

Abstract

This study examines the relationship between air temperature and urban environment indices, mainly focusing on sky view factor (SVF) in Seoul, Korea. We use air temperature data observed from 295 automatic weather stations (AWS) during the day and night in Seoul. We conduct a spatial regression analysis to capture the effect of spatial autocorrelation in our data and identify changes in the effects of SVF on air temperature, while conducting the regression model for each dataset according to the floor area ratio (FAR). The findings of our study indicate that SVF negatively affects air temperature during both day and night when other effects are controlled through spatial regression models. Moreover, we address the environmental indices associated with day-time and night-time air temperatures and identify the changing effects of SVF on air temperature according to the areal floor area ratio of the analysis datasets. This study contributes to the literature on the relationship between SVF and air temperature in high-density cities and suggests policy implications for improving urban thermal environments with regard to urban design and planning.

Suggested Citation

  • Jaehyun Ha & Sugie Lee & Cheolyeong Park, 2016. "Temporal Effects of Environmental Characteristics on Urban Air Temperature: The Influence of the Sky View Factor," Sustainability, MDPI, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:895-:d:77415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/895/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/895/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Younha Kim & Seung Man An & Jeong-Hee Eum & Jung-Hun Woo, 2016. "Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    2. Jihui Yuan & Kazuo Emura & Craig Farnham, 2016. "Highly Reflective Roofing Sheets Installed on a School Building to Mitigate the Urban Heat Island Effect in Osaka," Sustainability, MDPI, vol. 8(6), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheolyeong Park & Jaehyun Ha & Sugie Lee, 2017. "Association between Three-Dimensional Built Environment and Urban Air Temperature: Seasonal and Temporal Differences," Sustainability, MDPI, vol. 9(8), pages 1-16, July.
    2. Choi, Yeri & Lee, Sugie, 2020. "The impact of urban physical environments on cooling rates in summer: Focusing on interaction effects with a kernel-based regularized least squares (KRLS) model," Renewable Energy, Elsevier, vol. 149(C), pages 523-534.
    3. Yeri Choi & Sugie Lee & Hyunbin Moon, 2018. "Urban Physical Environments and the Duration of High Air Temperature: Focusing on Solar Radiation Trapping Effects," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    4. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    5. Yu-Hao Lin & Kang-Ting Tsai, 2017. "Screening of Tree Species for Improving Outdoor Human Thermal Comfort in a Taiwanese City," Sustainability, MDPI, vol. 9(3), pages 1-12, February.
    6. Yoonku Kwon & Shinha Joo & Soyoung Han & Chan Park, 2017. "Mapping the Distribution Pattern of Gentrification near Urban Parks in the Case of Gyeongui Line Forest Park, Seoul, Korea," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    7. Yue Ying & Mila Koeva & Monika Kuffer & Kwabena Obeng Asiama & Xia Li & Jaap Zevenbergen, 2020. "Making the Third Dimension (3D) Explicit in Hedonic Price Modelling: A Case Study of Xi’an, China," Land, MDPI, vol. 10(1), pages 1-26, December.
    8. Nikolaos D. Proutsos & Alexandra D. Solomou & Michaela Petropoulou & Nikolaos E. Chatzipavlis, 2022. "Micrometeorological and Hydraulic Properties of an Urban Green Space on a Warm Summer Day in a Mediterranean City (Attica–Greece)," Land, MDPI, vol. 11(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    2. Peng Ren & Xinxin Zhang & Haoyan Liang & Qinglin Meng, 2019. "Assessing the Impact of Land Cover Changes on Surface Urban Heat Islands with High-Spatial-Resolution Imagery on a Local Scale: Workflow and Case Study," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    3. Abdullah Addas & Ran Goldblatt & Steven Rubinyi, 2020. "Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus," Land, MDPI, vol. 9(6), pages 1-26, June.
    4. Brozovsky, J. & Gaitani, N. & Gustavsen, A., 2021. "A systematic review of urban climate research in cold and polar climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Cheolyeong Park & Jaehyun Ha & Sugie Lee, 2017. "Association between Three-Dimensional Built Environment and Urban Air Temperature: Seasonal and Temporal Differences," Sustainability, MDPI, vol. 9(8), pages 1-16, July.
    6. Jeong-Min Son & Jeong-Hee Eum & Dong-Pil Kim & Jino Kwon, 2018. "Management Strategies of Thermal Environment in Urban Area Using the Cooling Function of the Mountains: A Case Study of the Honam Jeongmaek Areas in South Korea," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    7. Jou-Man Huang & Liang-Chun Chen, 2020. "A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan," Sustainability, MDPI, vol. 12(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:895-:d:77415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.