IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3252-d1375082.html
   My bibliography  Save this article

Wireless Diagnosis and Control of DC–DC Converter for Off-Grid Photovoltaic Systems

Author

Listed:
  • Reda El Abbadi

    (LAMISNE, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir P.O. Box 8106, Morocco
    These authors contributed equally to this work.)

  • Mohamed Aatabe

    (LISTI, National School of Applied Sciences, Ibn Zohr University, Agadir P.O. Box 1136, Morocco
    These authors contributed equally to this work.)

  • Allal El Moubarek Bouzid

    (Research and Higher Education Department, ICAM School of Engineering, Toulouse Campus, 75 av. de Grande Bretagne, 31076 Toulouse, France)

Abstract

Integrating a photovoltaic (PV) microgrid system with wireless network control heralds a new era for renewable energy systems. This fusion capitalizes on the strengths of photovoltaic technology, leveraging solar energy for electricity generation while incorporating advanced networked control capabilities. Although employing network communication to facilitate information exchange among system elements offers benefits, it also introduces novel challenges which can hinder fault diagnosis, such as packet loss and communication delay. This paper focuses on a cloud-based fault detection approach for an effective boost converter within a photovoltaic system. Faults are diagnosed using a detection algorithm based on the Lyapunov function, ensuring power optimization. The effectiveness of our approach is demonstrated through simulations of a PV generator model utilizing real-time weather data collected in Brazil, illustrating its robustness through the acquired results.

Suggested Citation

  • Reda El Abbadi & Mohamed Aatabe & Allal El Moubarek Bouzid, 2024. "Wireless Diagnosis and Control of DC–DC Converter for Off-Grid Photovoltaic Systems," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3252-:d:1375082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Hu & Hongxu Zhang & Hongjian Liu & Xiaoyang Yu, 2021. "A survey on sliding mode control for networked control systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(6), pages 1129-1147, April.
    2. Ahmad Rivai & Nasrudin Abd Rahim & Mohamad Fathi Mohamad Elias & Jafferi Jamaludin, 2019. "Analysis of Photovoltaic String Failure and Health Monitoring with Module Fault Identification," Energies, MDPI, vol. 13(1), pages 1-16, December.
    3. Khabou, H. & Souissi, M. & Aitouche, A., 2020. "MPPT implementation on boost converter by using T–S fuzzy method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 119-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).
    2. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    3. Aatabe, Mohamed & El Guezar, Fatima & Vargas, Alessandro N. & Bouzahir, Hassane, 2021. "A novel stochastic maximum power point tracking control for off-grid standalone photovoltaic systems with unpredictable load demand," Energy, Elsevier, vol. 235(C).
    4. Guo, Xinchen & Wei, Guoliang, 2023. "Distributed sliding mode consensus control for multiple discrete-Time Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    5. Li, Jiaxing & Hu, Jun & Cheng, Jun & Wei, Yunliang & Yu, Hui, 2022. "Distributed filtering for time-varying state-saturated systems with packet disorders: An event-triggered case," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    6. Faiçal Hamidi & Severus Constantin Olteanu & Dumitru Popescu & Houssem Jerbi & Ingrid Dincă & Sondess Ben Aoun & Rabeh Abbassi, 2020. "Model Based Optimisation Algorithm for Maximum Power Point Tracking in Photovoltaic Panels," Energies, MDPI, vol. 13(18), pages 1-20, September.
    7. Zhang, Xuefeng & Chen, Shunan & Zhang, Jin-Xi, 2022. "Adaptive sliding mode consensus control based on neural network for singular fractional order multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3252-:d:1375082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.