IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1958-d1041699.html
   My bibliography  Save this article

Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials

Author

Listed:
  • Wajad Ulfat

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Ayesha Mohyuddin

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Muhammad Amjad

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Tonni Agustiono Kurniawan

    (College of Ecology and the Environment, Xiamen University, Xiamen 361102, China)

  • Beenish Mujahid

    (Department of Architecture, School of Architecture and Planning, University of Management and Technology, Lahore 54770, Pakistan)

  • Sohail Nadeem

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Mohsin Javed

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Adnan Amjad

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Abdul Qayyum Ashraf

    (Department of Biotechnology, Faculty of Science and Technology, Virtual University of Pakistan, Lahore 51000, Pakistan)

  • Mohd Hafiz Dzarfan Othman

    (Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor Bahru, Malaysia)

  • Sadaful Hassan

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

  • Muhammad Arif

    (Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan)

Abstract

Air pollution, resulting from buffing dust waste produced by local leather tanning industry, has become a critical issue for the environment and public health. To promote a circular economy through resource recovery, this work developed a thermal insulation composite using buffing dust-laden tanning waste mixed with polystyrene and a blowing agent. To prepare the samples from leather tanning waste, different proportions of buffing dust (5–20% ( w / w )) were blended with polystyrene in the presence of 3% ( w / w ) blowing agent. The composite material was processed in double-barreled with co-twin extruder to expose it to pressure and then heated at 200 °C. Different physico-chemical properties of composite samples were determined. The prepared composite materials had a good thermal conductivity (0.033–0.029 W/m-K), strong compression (5.21–6.25 ton), density (38–20 kg/m 3 ), and water absorption (5–7.5%), as compared to conventional constructional insulation panels. The thermal conductivity of polystyrene was reduced to 10% after the addition of buffing dust (20% w / w ). The presence of a blowing agent in the composite material enhanced its volume without compromising its physico-chemical properties. Thermo-gravimetric analysis showed that the thermal stability of the composite material ranged from 200–412 °C. FTIR analysis indicated that the composite had carbonyl and amino functional groups. The SEM images revealed the formation of voids with a decreasing homogeneity of the composite after the addition of the buffing dust waste. The EDX analysis revealed that the composite also had 62% of C and a tiny amount of Cr. This implies that the composite panels can be used for installation in buildings as thermal insulators in the construction sector. Overall, this work not only resolved the energy consumption problems during manufacturing, but it also brought positive impacts on the environment by recycling hazardous buffing dust and then reusing it as a thermal insulation material. Not only does this reduce the air pollution that results from the buffing dust waste, but this also promotes resource recovery in the framework of a circular economy.

Suggested Citation

  • Wajad Ulfat & Ayesha Mohyuddin & Muhammad Amjad & Tonni Agustiono Kurniawan & Beenish Mujahid & Sohail Nadeem & Mohsin Javed & Adnan Amjad & Abdul Qayyum Ashraf & Mohd Hafiz Dzarfan Othman & Sadaful H, 2023. "Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1958-:d:1041699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yılmaz, Onur & Cem Kantarli, I. & Yuksel, Mithat & Saglam, Mehmet & Yanik, Jale, 2007. "Conversion of leather wastes to useful products," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 436-448.
    2. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    3. Tonni Agustiono Kurniawan & Xue Liang & Elizabeth O’Callaghan & Huihwang Goh & Mohd Hafiz Dzarfan Othman & Ram Avtar & Tutuk Djoko Kusworo, 2022. "Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    4. Willi Haas & Fridolin Krausmann & Dominik Wiedenhofer & Markus Heinz, 2015. "How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 765-777, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    2. Colin M. Rose & Julia A. Stegemann, 2018. "From Waste Management to Component Management in the Construction Industry," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    3. Piciu Gabriela-Cornelia, 2021. "Ways To Accelerate The Circular Economy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 129-134, October.
    4. Concepción Garcés-Ayerbe & Pilar Rivera-Torres & Inés Suárez-Perales & Dante I. Leyva-de la Hiz, 2019. "Is It Possible to Change from a Linear to a Circular Economy? An Overview of Opportunities and Barriers for European Small and Medium-Sized Enterprise Companies," IJERPH, MDPI, vol. 16(5), pages 1-15, March.
    5. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    6. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    7. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    8. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    9. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    10. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    11. Luo, Anran & Rodríguez, Fabricio & Leipold, Sina, 2020. "Explaining the political gridlock behind international Circular Economy: Chinese and European perspectives on the Waste Ban," SocArXiv uyw5g, Center for Open Science.
    12. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    13. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    14. Arru, Brunella & Furesi, Roberto & Pulina, Pietro & Sau, Paola & Madau, Fabio A., 2022. "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 24(2), September.
    15. Pilar Buil & Olga Roger-Loppacher & Rejina M. Selvam & Vanessa Prieto-Sandoval, 2017. "The Involvement of Future Generations in the Circular Economy Paradigm: An Empirical Analysis on Aluminium Packaging Recycling in Spain," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    16. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    17. Enrico Sciubba, 2019. "The Exergy Footprint as a Sustainability Indicator: An Application to the Neanderthal–Sapiens Competition in the Late Pleistocene," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    18. Hervé Corvellec & Alison F. Stowell & Nils Johansson, 2022. "Critiques of the circular economy," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 421-432, April.
    19. Carlo Bellavite Pellegrini & Laura Pellegrini & Claudia Cannas, 2021. "Circular Economy Approach: The benefits of a new business model for European Firms," DISCE - Quaderni del Dipartimento di Politica Economica dipe0018, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    20. Daniela M. Salvioni & Alex Almici, 2020. "Transitioning Toward a Circular Economy: The Impact of Stakeholder Engagement on Sustainability Culture," Sustainability, MDPI, vol. 12(20), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1958-:d:1041699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.