IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14427-d1252460.html
   My bibliography  Save this article

Compensation Admittance Load Flow: A Computational Tool for the Sustainability of the Electrical Grid

Author

Listed:
  • Benedetto-Giuseppe Risi

    (Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
    E-Grids SPA, Enel Group, Via Mantova 24, 000198 Rome, Italy)

  • Francesco Riganti-Fulginei

    (Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy)

  • Antonino Laudani

    (Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy)

  • Michele Quercio

    (Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy)

Abstract

Compensation Admittance Load Flow (CALF) is a power flow analysis method that was developed to enhance the sustainability of the power grid. This method has been widely used in power system planning and operation, as it provides an accurate representation of the power system and its behavior under different operating conditions. By providing a more accurate representation of the power system, it can help identify potential problems and improve the overall performance of the grid. This paper proposes a new approach to the load flow (LF) problem by introducing a linear and iterative method of solving LF equations. The aim is to obtain fast results for calculating nodal voltages while maintaining high accuracy. The proposed CALF method is fast and accurate and is suitable for the iterative calculations required by large energy utilities to solve the problem of quantifying the maximum grid acceptance capacity of new energy from renewable sources and new loads, known as hosting capacity (HC) and load capacity (LC), respectively. Speed and accuracy are achieved through a properly designed linearization of the optimization problem, which introduces the concept of compensation admittance at the node. The proposed method was validated by comparing the results obtained with those coming from state-of-the-art methods.

Suggested Citation

  • Benedetto-Giuseppe Risi & Francesco Riganti-Fulginei & Antonino Laudani & Michele Quercio, 2023. "Compensation Admittance Load Flow: A Computational Tool for the Sustainability of the Electrical Grid," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14427-:d:1252460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14427/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    2. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesús Fraile Ardanuy & Roberto Alvaro-Hermana & Sandra Castano-Solis & Julia Merino, 2022. "Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems," Energies, MDPI, vol. 15(13), pages 1-20, June.
    2. Min Song & Yu Wang & Yong Long, 2022. "Investment and Production Strategies of Renewable Energy Power under the Quota and Green Power Certificate System," Energies, MDPI, vol. 15(11), pages 1-24, June.
    3. Xuehan Zhang & Yongju Son & Sungyun Choi, 2022. "Optimal Scheduling of Battery Energy Storage Systems and Demand Response for Distribution Systems with High Penetration of Renewable Energy Sources," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Mihai Sanduleac & Alexandru Sandulescu & Cristina Efremov & Constantin Ionescu & Ioan Catalin Damian & Alexandru Mandis, 2023. "Aspects of Design in Low Voltage Resilient Grids—Focus on Battery Sizing and U Level Control with P Regulation in Microgrids of Energy Communities," Energies, MDPI, vol. 16(4), pages 1-25, February.
    5. Soodabeh Ghalambaz & Christopher Neil Hulme, 2022. "A Scientometric Analysis of Energy Management in the Past Five Years (2018–2022)," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    7. Irfan Ullah & Muhammad Safdar & Jianfeng Zheng & Alessandro Severino & Arshad Jamal, 2023. "Employing Bibliometric Analysis to Identify the Current State of the Art and Future Prospects of Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-24, February.
    8. Alīna Safronova & Aiga Barisa, 2023. "Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors," Sustainability, MDPI, vol. 15(19), pages 1-37, September.
    9. Emely Cruz-De-Jesús & Jose L. Martínez-Ramos & Alejandro Marano-Marcolini, 2022. "Optimal Scheduling of Controllable Resources in Energy Communities: An Overview of the Optimization Approaches," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    11. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14427-:d:1252460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.