IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8159-d1149270.html
   My bibliography  Save this article

Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network

Author

Listed:
  • Koopo Kwon

    (Department of Shipping and Air Cargo & Drone Logistics, Youngsan University, 142, Bansong-sunhwan-ro, Haeundae-gu, Busan 48015, Republic of Korea)

  • Jaeryong So

    (Department of Industrial Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea)

Abstract

This study aims to predict new technologies by analyzing patent data and identifying key technology trends using a Temporal Network. We have chosen big data-based smart logistics technology as the scope of our analysis. To accomplish this, we first extract relevant patents by identifying technical keywords from prior literature and industry reports related to smart logistics. We then employ a technology prospect analysis to assess the innovation stage. Our findings indicate that smart logistics technology is in a growth stage characterized by continuous expansion. Moreover, we observe a future-oriented upward trend, which quantitatively confirms its classification as a hot technology domain. To predict future advancements, we establish an IPC Temporal Network to identify core and converging technologies. This approach enables us to forecast six innovative logistics technologies that will shape the industry’s future. Notably, our results align with the logistics technology roadmaps published by various countries worldwide, corroborating our findings’ reliability. The methodology presents in this research provides valuable data for developing R&D strategies and technology roadmaps to advance the smart logistics sector.

Suggested Citation

  • Koopo Kwon & Jaeryong So, 2023. "Future Smart Logistics Technology Based on Patent Analysis Using Temporal Network," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8159-:d:1149270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    3. Darren P. Cooper & Michael Tracey, 2005. "Supply chain integration via information technology: strategic implications and future trends," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 1(3), pages 237-257.
    4. Dong-Hui Jin & Hyun-Jung Kim, 2018. "Integrated Understanding of Big Data, Big Data Analysis, and Business Intelligence: A Case Study of Logistics," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    5. Lu Xu & Weijie Chen & Zhihan Lv, 2021. "Construction and Simulation of Economic Statistics Measurement Model Based on Time Series Analysis and Forecast," Complexity, Hindawi, vol. 2021, pages 1-9, June.
    6. Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
    7. Sternitzke, Christian & Bartkowski, Adam & Schramm, Reinhard, 2008. "Visualizing patent statistics by means of social network analysis tools," World Patent Information, Elsevier, vol. 30(2), pages 115-131, June.
    8. Koopo Kwon & Sungchan Jun & Yong-Jae Lee & Sanghei Choi & Chulung Lee, 2022. "Logistics Technology Forecasting Framework Using Patent Analysis for Technology Roadmap," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    9. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    10. Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
    11. Xin Zhang & Ling Feng & Rongqian Zhu & H. Stanley, 2015. "Applying temporal network analysis to the venture capital market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(10), pages 1-7, October.
    12. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    13. Haegeman, Karel & Marinelli, Elisabetta & Scapolo, Fabiana & Ricci, Andrea & Sokolov, Alexander, 2013. "Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration?," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 386-397.
    14. Eunsuk Chun & Sungchan Jun & Chulung Lee, 2021. "Identification of Promising Smart Farm Technologies and Development of Technology Roadmap Using Patent Map Analysis," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    15. C.K.M. Lee & Yaqiong Lv & K.K.H. Ng & William Ho & K.L. Choy, 2018. "Design and application of Internet of things-based warehouse management system for smart logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 2753-2768, April.
    16. Li, Huichun & Zhang, Xue & Zhao, Chengli, 2021. "Explaining social events through community evolution on temporal networks," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    17. Cho, Han Pil & Lim, Hyunsu & Lee, Dongmin & Cho, Hunhee & Kang, Kyung-In, 2018. "Patent analysis for forecasting promising technology in high-rise building construction," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 144-153.
    18. Dekle, Robert, 2020. "Robots and industrial labor: Evidence from Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    19. Comelli, Mickael & Féniès, Pierre & Tchernev, Nikolay, 2008. "A combined financial and physical flows evaluation for logistic process and tactical production planning: Application in a company supply chain," International Journal of Production Economics, Elsevier, vol. 112(1), pages 77-95, March.
    20. Francesco Facchini & Joanna Oleśków-Szłapka & Luigi Ranieri & Andrea Urbinati, 2019. "A Maturity Model for Logistics 4.0: An Empirical Analysis and a Roadmap for Future Research," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    21. Park, Yongtae & Yoon, Byungun & Lee, Sungjoo, 2005. "The idiosyncrasy and dynamism of technological innovation across industries: patent citation analysis," Technology in Society, Elsevier, vol. 27(4), pages 471-485.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    2. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    3. Koopo Kwon & Sungchan Jun & Yong-Jae Lee & Sanghei Choi & Chulung Lee, 2022. "Logistics Technology Forecasting Framework Using Patent Analysis for Technology Roadmap," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    4. Eunsuk Chun & Sungchan Jun & Chulung Lee, 2021. "Identification of Promising Smart Farm Technologies and Development of Technology Roadmap Using Patent Map Analysis," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    5. Jumi Hwang & Kyung Hee Kim & Jong Gyu Hwang & Sungchan Jun & Jiwon Yu & Chulung Lee, 2020. "Technological Opportunity Analysis: Assistive Technology for Blind and Visually Impaired People," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    6. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    8. Jun Hong Park & Hyunseog Chung & Ki Hong Kim & Jin Ju Kim & Chulung Lee, 2021. "The Impact of Technological Capability on Financial Performance in the Semiconductor Industry," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    9. Cristiano Antonelli & Francesco Crespi & Christian A. Mongeau Ospina & Giuseppe Scellato, 2017. "Knowledge composition, Jacobs externalities and innovation performance in European regions," Regional Studies, Taylor & Francis Journals, vol. 51(11), pages 1708-1720, November.
    10. Youngjung Geum & Moon-Soo Kim & Sungjoo Lee, 2017. "Service Technology: Definition and Characteristics Based on a Patent Database," Service Science, INFORMS, vol. 9(2), pages 147-166, June.
    11. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    12. An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
    13. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    14. Ahn, Sang-Jin, 2020. "Three characteristics of technology competition by IoT-driven digitization," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    15. Kim, Jieun & Lee, Changyong, 2017. "Novelty-focused weak signal detection in futuristic data: Assessing the rarity and paradigm unrelatedness of signals," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 59-76.
    16. Jorge Nogueira de Paiva Britto & Leonardo Costa Ribeiro & Lucas Teixeira Araújo & Eduardo da Motta e Albuquerque, 2019. "Patent citations, knowledge flows and catching-up: evidences of different national experiences for the period 1982-2006," Textos para Discussão Cedeplar-UFMG 606, Cedeplar, Universidade Federal de Minas Gerais.
    17. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    18. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Noh, Heeyong & Song, Young-Keun & Lee, Sungjoo, 2016. "Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations," Telecommunications Policy, Elsevier, vol. 40(10), pages 956-970.
    20. Xi Yang & Xiang Yu & Xin Liu, 2018. "Obtaining a Sustainable Competitive Advantage from Patent Information: A Patent Analysis of the Graphene Industry," Sustainability, MDPI, vol. 10(12), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8159-:d:1149270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.