IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2881-d762116.html
   My bibliography  Save this article

Changes in the Potential Distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico

Author

Listed:
  • Samaria Armenta-Montero

    (Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa 91000, Mexico)

  • Rebeca Menchaca-García

    (Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa 91000, Mexico)

  • Araceli Pérez-Silva

    (Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de México, Campus Tuxtepec, Tuxtepec 68350, Mexico)

  • Noé Velázquez-Rosas

    (Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa 91000, Mexico)

Abstract

Vanilla planifolia is the most widely cultivated species for obtaining natural vanilla. In Mexico, vanilla production has decreased due to negative effects of climate change. We evaluate the current, potential, and future of vanilla cultivation areas in Mexico using bioclimatic models with distinct climate change scenarios (intermediate emissions, temperature rise of 1.1 to 2.6 °C, and high emissions from 2.6 to 4.8 °C, to 2050 and 2070), in order to understand the magnitude of future distribution changes and propose future management strategies. We found that the areas with greatest potential for establishment of V . planifolia are northern Veracruz state bordering the state of Puebla (the Totonacapan region) and northeast Oaxaca state. In the models, the most relevant environmental variable were mean temperature and precipitation of the driest quarter. The average projections for 2050 and 2070 show a progressive reduction in the potential area for the species (−1.6 and −17.3%). However, the Totonacapan region maintains the largest ideal cultivation area, while that of northeast Oaxaca is reduced by 50%. These results show the need to redesign the strategies of agricultural production of vanilla, through sustainable and climate-smart agricultural production strategies as well as a national strategy for conservation of genetic diversity.

Suggested Citation

  • Samaria Armenta-Montero & Rebeca Menchaca-García & Araceli Pérez-Silva & Noé Velázquez-Rosas, 2022. "Changes in the Potential Distribution of Vanilla planifolia Andrews under Different Climate Change Projections in Mexico," Sustainability, MDPI, vol. 14(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2881-:d:762116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verónica Borbolla-Pérez & Lourdes Georgina Iglesias-Andreu & Mauricio Luna-Rodríguez & Pablo Octavio-Aguilar, 2017. "Perceptions regarding the challenges and constraints faced by smallholder farmers of vanilla in Mexico," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2421-2441, December.
    2. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    3. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    4. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    5. Soria-Auza, Rodrigo W. & Kessler, Michael & Bach, Kerstin & Barajas-Barbosa, Paola M. & Lehnert, Marcus & Herzog, Sebastian K. & Böhner, Jürgen, 2010. "Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia," Ecological Modelling, Elsevier, vol. 221(8), pages 1221-1229.
    6. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    7. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    8. Daniela Remolina-Figueroa & David A. Prieto-Torres & Wesley Dáttilo & Ernesto Salgado Díaz & Laura E. Nuñez Rosas & Claudia Rodríguez-Flores & Adolfo G. Navarro-Sigüenza & María del Coro Arizmendi, 2022. "Together forever? Hummingbird-plant relationships in the face of climate warming," Climatic Change, Springer, vol. 175(1), pages 1-21, November.
    9. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    10. Huihui Zhang & Xiao Sun & Guoshuai Zhang & Xinke Zhang & Yujing Miao & Min Zhang & Zhan Feng & Rui Zeng & Jin Pei & Linfang Huang, 2022. "Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch : Predictions Based on MaxEnt Ecological Niche Modeling," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    11. Goodbody, Tristan R.H. & Coops, Nicholas C. & Srivastava, Vivek & Parsons, Bethany & Kearney, Sean P. & Rickbeil, Gregory J.M. & Stenhouse, Gordon B., 2021. "Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling," Ecological Modelling, Elsevier, vol. 440(C).
    12. Zhenan Jin & Wentao Yu & Haoxiang Zhao & Xiaoqing Xian & Kaiting Jing & Nianwan Yang & Xinmin Lu & Wanxue Liu, 2022. "Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    13. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    14. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    15. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    16. David Makowski & Murthy Narasimha Mittinty, 2010. "Comparison of Scoring Systems for Invasive Pests Using ROC Analysis and Monte Carlo Simulations," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 906-915, June.
    17. Minerva Singh & Jessamine Badcock-Scruton & C. Matilda Collins, 2021. "What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    18. Robinson, Todd P. & van Klinken, Rieks D. & Metternicht, Graciela, 2010. "Comparison of alternative strategies for invasive species distribution modeling," Ecological Modelling, Elsevier, vol. 221(19), pages 2261-2269.
    19. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    20. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2881-:d:762116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.