IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14948-d970247.html
   My bibliography  Save this article

Rainfall Spatial-Temporal Variability and Trends in the Thamirabharani River Basin, India: Implications for Agricultural Planning and Water Management

Author

Listed:
  • Shanmugam Mohan Kumar

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Vellingiri Geethalakshmi

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Subbiah Ramanathan

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Alagarsamy Senthil

    (Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Kandasamy Senthilraja

    (Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Kulanthaivel Bhuvaneswari

    (Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Ramasamy Gowtham

    (Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Balaji Kannan

    (Department of Soil Water Conservation Engineering, Tamil Nadu Agricultural University, Coimbatore 641003, India)

  • Shanmugavel Priyanka

    (Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India)

Abstract

Rainfall is critical to agricultural and drinking water supply in the Thamirabharani river basin. The upper catchment areas of the Thamirabharani basin are located in high-elevated forest regions, and rainfall variability affects dam inflow and outflow. The well-known methods for rainfall analysis such as the coefficient of variation (CV), the precipitation concentration index (PCI), and trend analysis by Mann-Kendall and Sen’s slope test, as well as the Sen’s graphical innovative trend method (ITA) recently reported in several studies, were used. Rainfall data from gauge stations and the satellite-gridded Multisource Weighted Ensemble Precipitation (MSWEP) dataset were chosen for analysis at the annual and four-season time scales, namely, the Southwest Monsoon, Northeast Monsoon, winter, and summer seasons from 1991 to 2020. The mean annual PCI value reflects irregular monthly rainfall distribution (PCI > 20) in all gauge stations. The spatial monthly rainfall distribution of PCI values remarkedly shows a moderate distribution in the western and an anomalous distribution in the eastern part of the basin. The annual mean rainfall ranges from 718.4 to 2268.6 mm/year, decreasing from the high altitude zone in the west to the low plains and coastal regions in the east. Seasonal rainfall contributes about 42% from the NEM, 30.6% from the SWM, 22.8% from summer, and 3.9% from winter, with moderate variability (CV less than 30%). Ground stations experienced extremely high interannual variability in rainfall (more than 60%). Trend analysis by the MK, TFPW-MK, and ITA methods shows increasing annual rainfall in the plains and coastal regions of the basin; particularly, more variations among the seasons were observed in the Lower Thamirabharani sub-basin. The NEM and summer season rainfall are statistically significant and contribute to the increasing trend in annual rainfall. The ITA method performed better in the annual and seasonal scale for detecting the rainfall trend than the MK and TFPW-MK test. The Lower Thamirabharani sub-basin in the eastern part of the basin receives more rain during the NEM than in other areas. To summarize, the low plains in the central and coastal regions in the southeast part experience an increase in rainfall with irregular monthly distribution. This study helps farmers, governments, and policymakers in effective agricultural crop planning and water management.

Suggested Citation

  • Shanmugam Mohan Kumar & Vellingiri Geethalakshmi & Subbiah Ramanathan & Alagarsamy Senthil & Kandasamy Senthilraja & Kulanthaivel Bhuvaneswari & Ramasamy Gowtham & Balaji Kannan & Shanmugavel Priyanka, 2022. "Rainfall Spatial-Temporal Variability and Trends in the Thamirabharani River Basin, India: Implications for Agricultural Planning and Water Management," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14948-:d:970247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Sanusi Shiru & Shamsuddin Shahid & Noraliani Alias & Eun-Sung Chung, 2018. "Trend Analysis of Droughts during Crop Growing Seasons of Nigeria," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
    2. Jaekyoung Kim & Junsuk Kang, 2020. "Analysis of Flood Damage in the Seoul Metropolitan Government Using Climate Change Scenarios and Mitigation Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    3. Jiao Fan & Wenchao Sun & Yong Zhao & Baolin Xue & Depeng Zuo & Zongxue Xu, 2018. "Trend Analyses of Extreme Precipitation Events in the Yarlung Zangbo River Basin, China Using a High-Resolution Precipitation Product," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    4. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    5. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    6. Yesen Liu & Ximin Yuan & Liang Guo & Yaohuan Huang & Xiaolei Zhang, 2017. "Driving Force Analysis of the Temporal and Spatial Distribution of Flash Floods in Sichuan Province," Sustainability, MDPI, vol. 9(9), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manikandan Muthiah & Saravanan Sivarajan & Nagarajan Madasamy & Anandaraj Natarajan & Raviraj Ayyavoo, 2024. "Analyzing Rainfall Trends Using Statistical Methods across Vaippar Basin, Tamil Nadu, India: A Comprehensive Study," Sustainability, MDPI, vol. 16(5), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Rajab Houmsi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Kamal Ahmed & Ghaith Falah Ziarh & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim, 2019. "Spatial Shift of Aridity and Its Impact on Land Use of Syria," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    2. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    3. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    4. Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
    5. Omolola M. Adisa & Muthoni Masinde & Joel O. Botai & Christina M. Botai, 2020. "Bibliometric Analysis of Methods and Tools for Drought Monitoring and Prediction in Africa," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    6. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    8. Junnan Xiong & Chongchong Ye & Weiming Cheng & Liang Guo & Chenghu Zhou & Xiaolei Zhang, 2019. "The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    9. Xiaoyun Sun & Guotao Zhang & Jiao Wang & Chaoyue Li & Shengnan Wu & Yao Li, 2022. "Spatiotemporal variation of flash floods in the Hengduan Mountains region affected by rainfall properties and land use," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 465-488, March.
    10. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    11. Lucas Eduardo Oliveira Aparecido & Kamila Cunha Meneses & Pedro Antonio Lorençone & João Antonio Lorençone & Jose Reinaldo da Silva Cabral de Moraes & Glauco Souza Rolim, 2023. "Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 855-878, January.
    12. Ihsan F. Hasan & Rozi Abdullah, 2023. "Multivariate index for monitoring drought (case study, Northeastern of Iraq)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3817-3837, April.
    13. Yangyang Xu & Lei Lin, 2017. "Pattern scaling based projections for precipitation and potential evapotranspiration: sensitivity to composition of GHGs and aerosols forcing," Climatic Change, Springer, vol. 140(3), pages 635-647, February.
    14. Fanta F. Jabbi & Yu’e Li & Tianyi Zhang & Wang Bin & Waseem Hassan & You Songcai, 2021. "Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    15. L. V. Noto & G. Cipolla & D. Pumo & A. Francipane, 2023. "Climate Change in the Mediterranean Basin (Part II): A Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2307-2323, May.
    16. Swatantra Kumar Dubey & JungJin Kim & Syewoon Hwang & Younggu Her & Hanseok Jeong, 2023. "Variability of Extreme Events in Coastal and Inland Areas of South Korea during 1961–2020," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    17. Runze Tong & Wenchao Sun & Quan Han & Jingshan Yu & Zaifeng Tian, 2020. "Spatial and Temporal Variations in Extreme Precipitation and Temperature Events in the Beijing–Tianjin–Hebei Region of China over the Past Six Decades," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    18. Jian Fang & Feng Kong & Jiayi Fang & Lin Zhao, 2018. "Observed changes in hydrological extremes and flood disaster in Yangtze River Basin: spatial–temporal variability and climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 89-107, August.
    19. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    20. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14948-:d:970247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.