IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13604-d948683.html
   My bibliography  Save this article

Multi-Scenario Simulation of Ecosystem Service Value in Wuhan Metropolitan Area Based on PLUS-GMOP Model

Author

Listed:
  • Leizhou Zhu

    (School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Engineering and Technology Research Center of Urbanization, Wuhan 430074, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, Wuhan 430074, China)

  • Yaping Huang

    (School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Engineering and Technology Research Center of Urbanization, Wuhan 430074, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, Wuhan 430074, China)

Abstract

Rapid construction and development activities in large urban areas have significantly impacted land use and land cover (LULC). They have brought great pressure to urban sustainable development. Current studies have shown that changes in LULC structure significantly affect regional ecosystem service functions but lack the sufficient scientific basis to provide reasonable strategies for the future development of urban areas. Based on land use and related data for the Wuhan metropolitan area (WMA) in 2000, 2010, and 2020, in this study, we construct a land use and ecosystem service value (ESV) simulation method based on a coupled PLUS-GMOP (patch generation land use simulation and grey multi-objective optimization) model and find that the changes in LULC structure from 2000 to 2020 are mainly reflected in the decrease in farmland and water area and the increase in built-up land, which are spatially reflected in Wuhan city center and other surrounding urban centers. The ESV also exhibits a slight increase and then a significant decrease, and a consistent overall pattern of high in the west and low in the east. By presupposing three scenarios for 2030 (ND, natural development; EFD, ecological first development; EECD, ecological and economic coordinated development), the analysis shows that although the ecological service value is still decreasing, the EECD scenario achieves a relatively high economic value (+90.134 billion yuan) by losing less ecological service value (0.27 million yuan) than EFD, which is the development model advocated in this study. The PLUS-GMOP coupling model proposed in this study provides a scientific reference for coordinating regional economic development and ecological protection in large cities, and provides a new technical path for metropolitan area sustainable development and planning.

Suggested Citation

  • Leizhou Zhu & Yaping Huang, 2022. "Multi-Scenario Simulation of Ecosystem Service Value in Wuhan Metropolitan Area Based on PLUS-GMOP Model," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13604-:d:948683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    2. Min Song & Can Hu, 2018. "A Coupling Relationship between the Eco-Environment Carrying Capacity and New-Type Urbanization: A Case Study of the Wuhan Metropolitan Area in China," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    3. Julia von HANXLEDEN & Jan WEDEMEIER, 2019. "Development of metropolitan and non-metropolitan regions: growing disparities in the Europe of 28," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 10, pages 163-174, December.
    4. Min Zhou & Man Yuan & Yaping Huang & Kaixuan Lin, 2021. "Effects of Institutions on Spatial Patterns of Manufacturing Industries and Policy Implications in Metropolitan Areas: A Case Study of Wuhan, China," Land, MDPI, vol. 10(7), pages 1-16, July.
    5. Keyue Yuan & Fei Li & Haijuan Yang & Yiming Wang, 2019. "The Influence of Land Use Change on Ecosystem Service Value in Shangzhou District," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    6. Mekonnen H. Daba & Songcai You, 2022. "Quantitatively Assessing the Future Land-Use/Land-Cover Changes and Their Driving Factors in the Upper Stream of the Awash River Based on the CA–Markov Model and Their Implications for Water Resources," Sustainability, MDPI, vol. 14(3), pages 1-29, January.
    7. Yongjun Du & Xiaolong Li & Xinlin He & Xiaoqian Li & Guang Yang & Dongbo Li & Wenhe Xu & Xiang Qiao & Chen Li & Lu Sui, 2022. "Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China," IJERPH, MDPI, vol. 19(10), pages 1-31, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fandi Meng & Zhi Zhou & Pengtao Zhang, 2023. "Multi-Objective Optimization of Land Use in the Beijing–Tianjin–Hebei Region of China Based on the GMOP-PLUS Coupling Model," Sustainability, MDPI, vol. 15(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Yang & Fenglian Liu, 2022. "Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    2. Yongjun Du & Xiaolong Li & Xinlin He & Xiaoqian Li & Guang Yang & Dongbo Li & Wenhe Xu & Xiang Qiao & Chen Li & Lu Sui, 2022. "Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China," IJERPH, MDPI, vol. 19(10), pages 1-31, May.
    3. Luping Shi & Zhongyao Cai & Xuhui Ding & Rong Di & Qianqian Xiao, 2020. "What Factors Affect the Level of Green Urbanization in the Yellow River Basin in the Context of New-Type Urbanization?," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    4. Tubiana, Matteo & Miguelez, Ernest & Moreno, Rosina, 2022. "In knowledge we trust: Learning-by-interacting and the productivity of inventors," Research Policy, Elsevier, vol. 51(1).
    5. Zhiwei Deng & Bin Quan, 2022. "Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    6. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    7. Fuli Wang & Wei Fu & Jiancheng Chen, 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use," Land, MDPI, vol. 11(12), pages 1-15, December.
    8. Sai Hu & Longqian Chen & Long Li & Bingyi Wang & Lina Yuan & Liang Cheng & Ziqi Yu & Ting Zhang, 2019. "Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    9. Nuaman Ejaz & Mohamed Elhag & Jarbou Bahrawi & Lifu Zhang & Hamza Farooq Gabriel & Khalil Ur Rahman, 2023. "Soil Erosion Modelling and Accumulation Using RUSLE and Remote Sensing Techniques: Case Study Wadi Baysh, Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    10. Yang Zhang & Nazhalati Naerkezi & Yun Zhang & Bo Wang, 2024. "Multi-Scenario Land Use/Cover Change and Its Impact on Carbon Storage Based on the Coupled GMOP-PLUS-InVEST Model in the Hexi Corridor, China," Sustainability, MDPI, vol. 16(4), pages 1-22, February.
    11. Cheng He & Kangning Xiong & Yongkuan Chi & Shuzhen Song & Jinzhong Fang & Shuyu He, 2022. "Effects of Landscape Type Change on Spatial and Temporal Evolution of Ecological Assets in a Karst Plateau-Mountain Area," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    12. Zahra Allahdad & Saeed Malmasi & Morvarid Montazeralzohour & Seyed Mohammad Moein Sadeghi & Mohammad M. Khabbazan, 2022. "Presenting the Spatio-Temporal Model for Predicting and Determining Permissible Land Use Changes Based on Drinking Water Quality Standards: A Case Study of Northern Iran," Resources, MDPI, vol. 11(11), pages 1-14, November.
    13. Ze Zhou & Bin Quan & Zhiwei Deng, 2023. "Effects of Land Use Changes on Ecosystem Service Value in Xiangjiang River Basin, China," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    14. Daquan Huang & Shihao Zhu & Tao Liu & Pingping Ma, 2022. "Do land ownership types matter in manufacturing firms’ location choice? Using Beijing as a case study," Growth and Change, Wiley Blackwell, vol. 53(1), pages 151-169, March.
    15. Yanming Wu & Uta Pottgiesser & Wido Quist & Qi Zhou, 2022. "The Guidance and Control of Urban Planning for Reuse of Industrial Heritage: A Study of Nanjing," Land, MDPI, vol. 11(6), pages 1-37, June.
    16. Qing Liu & Dongdong Yang & Lei Cao, 2022. "Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China," Sustainability, MDPI, vol. 14(17), pages 1-25, August.
    17. Yi Zhang & Guangqiu Huang, 2023. "Identifying network structure characteristics and key factors for the co-evolution between high-quality industrial development and ecological environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6591-6625, July.
    18. Yu-Le Zhang & Guan-Di He & Ye-Qing He & Teng-Bing He, 2022. "Bibliometrics-Based: Trends in Phytoremediation of Potentially Toxic Elements in Soil," Land, MDPI, vol. 11(11), pages 1-16, November.
    19. Guoqiang Ma & Qiujie Li & Jinxiu Zhang & Lixun Zhang & Hua Cheng & Zhengping Ju & Guojun Sun, 2022. "Simulation and Analysis of Land-Use Change Based on the PLUS Model in the Fuxian Lake Basin (Yunnan–Guizhou Plateau, China)," Land, MDPI, vol. 12(1), pages 1-18, December.
    20. Fandi Meng & Zhi Zhou & Pengtao Zhang, 2023. "Multi-Objective Optimization of Land Use in the Beijing–Tianjin–Hebei Region of China Based on the GMOP-PLUS Coupling Model," Sustainability, MDPI, vol. 15(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13604-:d:948683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.