IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10873-d902950.html
   My bibliography  Save this article

Slope Deformation Prediction Based on MT-InSAR and Fbprophet for Deep Excavation Section of South–North Water Transfer Project

Author

Listed:
  • Laizhong Ding

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
    Institute of Surveying Mapping and Geoinformation, Zhengzhou 450007, China)

  • Chunyi Li

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Lei Wei

    (Institute of Surveying Mapping and Geoinformation, Zhengzhou 450007, China)

  • Zengzhang Guo

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Pengzhen Jia

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Wenjie Wang

    (Institute of Surveying Mapping and Geoinformation, Zhengzhou 450007, China)

  • Yantao Gao

    (Institute of Surveying Mapping and Geoinformation, Zhengzhou 450007, China)

Abstract

In the operation and maintenance of the South–North Water Transfer Project, monitoring and predicting the canal slope deformation quickly and efficiently is one of the urgent problems to be solved. To predict the slope deformation of the deep excavated canal section at the head of the canal. We propose a new idea of adopting the joint prediction of MT-InSAR and Fbprophet. Firstly, MT-InSAR monitoring technology was used to invert channel deformation using 88 Sentinel-1A orbit-raising image data with a time baseline from 2017 to 2019. The time-series deformation of nine monitoring points was also extracted, and it was found that the time-series curves of the cumulative deformation of the channel slope showed fluctuations. The Fbprophet algorithm was then used to train the prediction model in Python to predict the channel slope deformation over the next 365 days. Finally, the prediction results were compared with the MT-InSAR monitoring values to analyze the prediction accuracy and applicability of the Fbprophet algorithm for the slope deformation monitoring of the South–North Water Transfer Project. The results show that: the deformation rate of the slope of the deep excavation section is in the range of 10 mm/a to 25 mm/a, the maximum accumulated deformation is about 60 mm, and the slope of the excavation canal shows a lifting phenomenon; among the nine monitoring points, the minimum and maximum predicted values of deformation using the machine learning prediction model trained in this paper were 56 mm and 73 mm, respectively; comparing the predicted and monitored values, their correlation coefficients were 0.998 at the highest and 0.988 at the lowest, and the minimum and maximum values of RMSE (RootMean Square Error) were 0.72 mm and 2.87 mm, respectively. It shows that the prediction model trained by the Fbprophet algorithm in this paper applies to the prediction of slope deformation in the deep excavation section, and our prediction results can provide a data reference for disaster prevention and the sustainable development of the South–North Water Transfer Project.

Suggested Citation

  • Laizhong Ding & Chunyi Li & Lei Wei & Zengzhang Guo & Pengzhen Jia & Wenjie Wang & Yantao Gao, 2022. "Slope Deformation Prediction Based on MT-InSAR and Fbprophet for Deep Excavation Section of South–North Water Transfer Project," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10873-:d:902950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    2. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    3. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    4. Yinghui Huang & Hui Liu & Lin Zhang & Shen Li & Weijun Wang & Zhihong Ren & Zongkui Zhou & Xueyao Ma, 2021. "The Psychological and Behavioral Patterns of Online Psychological Help-Seekers before and during COVID-19 Pandemic: A Text Mining-Based Longitudinal Ecological Study," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    5. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    6. Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
    7. Natalia Turdyeva & Anna Tsvetkova & Levon Movsesyan & Alexey Porshakov & Dmitriy Chernyadyev, 2021. "Data of Sectoral Financial Flows as a High-Frequency Indicator of Economic Activity," Russian Journal of Money and Finance, Bank of Russia, vol. 80(2), pages 28-49, June.
    8. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    9. Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
    10. Ran Sun & James Nolan & Suren Kulshreshtha, 2022. "Agent-based modeling of policy induced agri-environmental technology adoption," SN Business & Economics, Springer, vol. 2(8), pages 1-26, August.
    11. Hasan Fallahgoul, 2020. "Inside the Mind of Investors During the COVID-19 Pandemic: Evidence from the StockTwits Data," Papers 2004.11686, arXiv.org, revised May 2020.
    12. Elham M. Al-Ali & Yassine Hajji & Yahia Said & Manel Hleili & Amal M. Alanzi & Ali H. Laatar & Mohamed Atri, 2023. "Solar Energy Production Forecasting Based on a Hybrid CNN-LSTM-Transformer Model," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    13. Mario Zupan, 2024. "Accounting journal entries as a long‐term multivariate time series: Forecasting wholesale warehouse output," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    14. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    15. Alsudais, Abdulkareem, 2021. "In-code citation practices in open research software libraries," Journal of Informetrics, Elsevier, vol. 15(2).
    16. Paweł Pełka, 2023. "Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods," Energies, MDPI, vol. 16(2), pages 1-22, January.
    17. Bahrudin Hrnjica & Ognjen Bonacci, 2019. "Lake Level Prediction using Feed Forward and Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2471-2484, May.
    18. Yun-Yi Zhang & Kai Kang & Jia-Rui Lin & Jian-Ping Zhang & Yi Zhang, 2020. "Building information modeling–based cyber-physical platform for building performance monitoring," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
    19. Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
    20. Mendoza, Daniel E. & Ochoa-Sánchez, Ana & Samaniego, Esteban P., 2022. "Forecasting of a complex phenomenon using stochastic data-based techniques under non-conventional schemes: The SARS-CoV-2 virus spread case," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10873-:d:902950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.