IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8764-d865259.html
   My bibliography  Save this article

Use of Metagenomic Whole Genome Shotgun Sequencing Data in Taxonomic Assignment of Dipterygium glaucum Rhizosphere and Surrounding Bulk Soil Microbiomes, and Their Response to Watering

Author

Listed:
  • Ashwag Shami

    (Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia)

  • Rewaa S. Jalal

    (Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia)

  • Ruba A. Ashy

    (Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia)

  • Haneen W. Abuauf

    (Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24381, Saudi Arabia)

  • Lina Baz

    (Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mohammed Y. Refai

    (Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia)

  • Aminah A. Barqawi

    (Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 28434, Saudi Arabia)

  • Hanadi M. Baeissa

    (Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia)

  • Manal A. Tashkandi

    (Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia)

  • Sahar Alshareef

    (Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia)

  • Aala A. Abulfaraj

    (Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

Abstract

The metagenomic whole genome shotgun sequencing (mWGS) approach was used to detect signatures of the rhizosphere microbiomes of Dipterygium glaucum and surrounding bulk soil microbiomes, and to detect differential microbial responses due to watering. Preliminary results reflect the reliability of the experiment and the rationality of grouping microbiomes. Based on the abundance of non-redundant genes, bacterial genomes showed the highest level, followed by Archaeal and Eukaryotic genomes, then, the least abundant viruses. Overall results indicate that most members of bacteria have a higher abundance/relative abundance (AB/RA) pattern in the rhizosphere towards plant growth promotion, while members of eukaryota have a higher pattern in bulk soil, most likely acting as pathogens. The results also indicate the contribution of mycorrhiza (genus Rhizophagus ) in mediating complex mutualistic associations between soil microbes (either beneficial or harmful) and plant roots. Some of these symbiotic relationships involve microbes of different domains responding differentially to plant root exudates. Among these are included the bacterial genus Burkholderia and eukaryotic genus Trichoderma , which have antagonistic activities against the eukaryotic genus Fusarium . Another example involves Ochrobactrum phage POA1180 , its bacterial host and plant roots. One of the major challenges in plant nutrition involves other microbes that manipulate nitrogen levels in the soil. Among these are the microbes that perform contraversal actions of nitrogen fixation (the methanogen Euryarchaeota) and ammonia oxidation (Crenarchaeota). The net nitrogen level in the soil is originally based on the AB/RA of these microbes and partially on the environmental condition. Watering seems to influence the AB/RA of a large number of soil microbes, where drought-sensitive microbes (members of phyla Acidobacteria and Gemmatimonadetes) showed an increased AB/RA pattern after watering, while others ( Burkholderia and Trichoderma ) seem to be among microbes assisting plants to withstand abiotic stresses. This study sheds light on the efficient use of mWGS in the taxonomic assignment of soil microbes and in their response to watering. It also provides new avenues for improving biotic and abiotic resistance in domestic plant germplasm via the manipulation of soil microbes.

Suggested Citation

  • Ashwag Shami & Rewaa S. Jalal & Ruba A. Ashy & Haneen W. Abuauf & Lina Baz & Mohammed Y. Refai & Aminah A. Barqawi & Hanadi M. Baeissa & Manal A. Tashkandi & Sahar Alshareef & Aala A. Abulfaraj, 2022. "Use of Metagenomic Whole Genome Shotgun Sequencing Data in Taxonomic Assignment of Dipterygium glaucum Rhizosphere and Surrounding Bulk Soil Microbiomes, and Their Response to Watering," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8764-:d:865259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Qin & Fengling Yang & Ang Li & Edi Prifti & Yanfei Chen & Li Shao & Jing Guo & Emmanuelle Le Chatelier & Jian Yao & Lingjiao Wu & Jiawei Zhou & Shujun Ni & Lin Liu & Nicolas Pons & Jean Michel Bat, 2014. "Alterations of the human gut microbiome in liver cirrhosis," Nature, Nature, vol. 513(7516), pages 59-64, September.
    2. Junjie Qin & Ruiqiang Li & Jeroen Raes & Manimozhiyan Arumugam & Kristoffer Solvsten Burgdorf & Chaysavanh Manichanh & Trine Nielsen & Nicolas Pons & Florence Levenez & Takuji Yamada & Daniel R. Mende, 2010. "A human gut microbial gene catalogue established by metagenomic sequencing," Nature, Nature, vol. 464(7285), pages 59-65, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Y. Refai & Aala A. Abulfaraj & Israa J. Hakeem & Nehad A. Shaer & Mashael D. Alqahtani & Maryam M. Alomran & Nahaa M. Alotaibi & Hana S. Sonbol & Abdulrahman M. Alhashimi & Nouf S. Al-Abbas &, 2023. "Rhizobiome Signature and Its Alteration Due to Watering in the Wild Plant Moringa oleifera," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    2. Efrat Muller & Itamar Shiryan & Elhanan Borenstein, 2024. "Multi-omic integration of microbiome data for identifying disease-associated modules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Qi, Lijuan & Wu, Jiansong & Chen, Ye & Wen, Qing & Xu, Haitao & Wang, Yuyang, 2020. "Shape-controllable binderless self-supporting hydrogel anode for microbial fuel cells," Renewable Energy, Elsevier, vol. 156(C), pages 1325-1335.
    4. Runtan Cheng & Lu Wang & Shenglong Le & Yifan Yang & Can Zhao & Xiangqi Zhang & Xin Yang & Ting Xu & Leiting Xu & Petri Wiklund & Jun Ge & Dajiang Lu & Chenhong Zhang & Luonan Chen & Sulin Cheng, 2022. "A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Lara S. Franco & Danielle F. Shanahan & Richard A. Fuller, 2017. "A Review of the Benefits of Nature Experiences: More Than Meets the Eye," IJERPH, MDPI, vol. 14(8), pages 1-29, August.
    7. Xiaoji (Christine) Liu & Kevin D. Floate & Monika A. Gorzelak & Devin B. Holman & Scott Hrycauk & Hiroshi Kubota & Newton Lupwayi & Jonathan A. D. Neilson & Rodrigo Ortega Polo & Renée M. Petri & Lan , 2023. "Prairie Agroecosystems: Interconnected Microbiomes of Livestock, Soil and Insects," Agriculture, MDPI, vol. 13(2), pages 1-28, January.
    8. Yu-Feng Wei & Ming-Shyan Huang & Cheng-Hsieh Huang & Yao-Tsung Yeh & Chih-Hsin Hung, 2022. "Impact of Gut Dysbiosis on the Risk of Non-Small-Cell Lung Cancer," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    9. Lharbi Dridi & Fernando Altamura & Emmanuel Gonzalez & Olivia Lui & Ryszard Kubinski & Reilly Pidgeon & Adrian Montagut & Jasmine Chong & Jianguo Xia & Corinne F. Maurice & Bastien Castagner, 2023. "Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jennifer T. Wolstenholme & Justin M. Saunders & Maren Smith & Jason D. Kang & Phillip B. Hylemon & Javier González-Maeso & Andrew Fagan & Derrick Zhao & Masoumeh Sikaroodi & Jeremy Herzog & Amirhossei, 2022. "Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Fiona B. Tamburini & Dylan Maghini & Ovokeraye H. Oduaran & Ryan Brewster & Michaella R. Hulley & Venesa Sahibdeen & Shane A. Norris & Stephen Tollman & Kathleen Kahn & Ryan G. Wagner & Alisha N. Wade, 2022. "Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Zahraa Al Bander & Marloes Dekker Nitert & Aya Mousa & Negar Naderpoor, 2020. "The Gut Microbiota and Inflammation: An Overview," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
    13. Qi Su & Qin Liu & Raphaela Iris Lau & Jingwan Zhang & Zhilu Xu & Yun Kit Yeoh & Thomas W. H. Leung & Whitney Tang & Lin Zhang & Jessie Q. Y. Liang & Yuk Kam Yau & Jiaying Zheng & Chengyu Liu & Mengjin, 2022. "Faecal microbiome-based machine learning for multi-class disease diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Doris Vandeputte & Lindsey Commer & Raul Y. Tito & Gunter Kathagen & João Sabino & Séverine Vermeire & Karoline Faust & Jeroen Raes, 2021. "Temporal variability in quantitative human gut microbiome profiles and implications for clinical research," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Emidio Scarpellini & Emanuele Rinninella & Martina Basilico & Esther Colomier & Carlo Rasetti & Tiziana Larussa & Pierangelo Santori & Ludovico Abenavoli, 2021. "From Pre- and Probiotics to Post-Biotics: A Narrative Review," IJERPH, MDPI, vol. 19(1), pages 1-14, December.
    17. Wei Zhou & Wen-hui Wu & Zi-lin Si & Hui-ling Liu & Hanyu Wang & Hong Jiang & Ya-fang Liu & Raphael N. Alolga & Cheng Chen & Shi-jia Liu & Xue-yan Bian & Jin-jun Shan & Jing Li & Ning-hua Tan & Zhi-hao, 2022. "The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Julie Reygner & Claire Joly Condette & Aurélia Bruneau & Stéphane Delanaud & Larbi Rhazi & Flore Depeint & Latifa Abdennebi-Najar & Veronique Bach & Camille Mayeur & Hafida Khorsi-Cauet, 2016. "Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME ® Model," IJERPH, MDPI, vol. 13(11), pages 1-18, November.
    19. Karolina Skonieczna-Żydecka & Ewa Stachowska & Dominika Maciejewska & Karina Ryterska & Joanna Palma & Maja Czerwińska-Rogowska & Mariusz Kaczmarczyk & Anna Gudan & Honorata Mruk & Barbara Świniarska , 2018. "The Digestive Health among Participants of the Woodstock Rock Festival in Poland—A Cross-Sectional Survey," IJERPH, MDPI, vol. 15(10), pages 1-13, October.
    20. Shaojun Pan & Chengkai Zhu & Xing-Ming Zhao & Luis Pedro Coelho, 2022. "A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8764-:d:865259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.