IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7855-d849448.html
   My bibliography  Save this article

Agricultural Big Data Architectures in the Context of Climate Change: A Systematic Literature Review

Author

Listed:
  • Ania Cravero

    (Department of Computer Science and Informatics, Centre of Excellence for Modelling and Scientific Computing, Universidad de La Frontera, Temuco 4811230, Chile)

  • Ana Bustamante

    (Department of Computer Science and Informatics, Centre of Excellence for Modelling and Scientific Computing, Universidad de La Frontera, Temuco 4811230, Chile)

  • Marlene Negrier

    (Department of Computer Science and Informatics, Centre of Excellence for Modelling and Scientific Computing, Universidad de La Frontera, Temuco 4811230, Chile)

  • Patricio Galeas

    (Department of Computer Science and Informatics, Centre of Excellence for Modelling and Scientific Computing, Universidad de La Frontera, Temuco 4811230, Chile)

Abstract

Climate change is currently one of agriculture’s main problems in achieving sustainability. It causes drought, increased rainfall, and increased diseases, causing a decrease in food production. In order to combat these problems, Agricultural Big Data contributes with tools that improve the understanding of complex, multivariate, and unpredictable agricultural ecosystems through the collection, storage, processing, and analysis of vast amounts of data from diverse heterogeneous sources. This research aims to discuss the advancement of technologies used in Agricultural Big Data architectures in the context of climate change. The study aims to highlight the tools used to process, analyze, and visualize the data, to discuss the use of the architectures in crop, water, climate, and soil management, and especially to analyze the context, whether it is in Resilience Mitigation or Adaptation. The PRISMA protocol guided the study, finding 33 relevant papers. However, despite advances in this line of research, few papers were found that mention architecture components, in addition to a lack of standards and the use of reference architectures that allow the proper development of Agricultural Big Data in the context of climate change.

Suggested Citation

  • Ania Cravero & Ana Bustamante & Marlene Negrier & Patricio Galeas, 2022. "Agricultural Big Data Architectures in the Context of Climate Change: A Systematic Literature Review," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7855-:d:849448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    2. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    3. Thu-Huong Nguyen & Oz Sahin & Michael Howes, 2021. "Climate Change Adaptation Influences and Barriers Impacting the Asian Agricultural Industry," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    4. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    5. Fernández-Getino, A.P. & Alonso-Prados, J.L. & Santín-Montanyá, M.I., 2018. "Challenges and prospects in connectivity analysis in agricultural systems: Actions to implement policies on land management and carbon storage at EU level," Land Use Policy, Elsevier, vol. 71(C), pages 146-159.
    6. Robert B. Zougmoré & Peter Läderach & Bruce M. Campbell, 2021. "Transforming Food Systems in Africa under Climate Change Pressure: Role of Climate-Smart Agriculture," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    7. Badr-Eddine Boudriki Semlali & Chaker El Amrani & Guadalupe Ortiz, 2020. "Hadoop Paradigm for Satellite Environmental Big Data Processing," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 11(1), pages 23-47, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaizhi Tang & Jiacheng Niu & Zibing Niu & Qi Liu & Yuanfang Huang & Wenju Yun & Chongyang Shen & Zejun Huo, 2023. "System Cognition and Analytic Technology of Cultivated Land Quality from a Data Perspective," Land, MDPI, vol. 12(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maribel Vega-Arce & Gonzalo Salas & Gastón Núñez-Ulloa & Cristián Pinto-Cortez & Ivelisse Torres Fernandez & Yuh-Shan Ho, 2019. "Research performance and trends in child sexual abuse research: a Science Citation Index Expanded-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1505-1525, December.
    2. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    3. Singh, Ajay Kumar & Ashraf, Shah Nawaz & Sharma, Sandeep Kumar, 2023. "Farmer’s Perception on Climatic Factors and Social-economic Characteristics in the Agricultural Sector of Gujarat," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(1), March.
    4. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    5. Mike Thelwall, 2020. "Mid-career field switches reduce gender disparities in academic publishing," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1365-1383, June.
    6. Pantea Kamrani & Isabelle Dorsch & Wolfgang G. Stock, 2021. "Do researchers know what the h-index is? And how do they estimate its importance?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5489-5508, July.
    7. Yves Gingras & Mahdi Khelfaoui, 2018. "Assessing the effect of the United States’ “citation advantage” on other countries’ scientific impact as measured in the Web of Science (WoS) database," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 517-532, February.
    8. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    9. Lea Primožič & Andreja Kutnar, 2022. "Sustainability Communication in Global Consumer Brands," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    10. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    11. Manuel Sánchez-Pérez & Nuria Rueda-López & María Belén Marín-Carrillo & Eduardo Terán-Yépez, 2021. "Theoretical dilemmas, conceptual review and perspectives disclosure of the sharing economy: a qualitative analysis," Review of Managerial Science, Springer, vol. 15(7), pages 1849-1883, October.
    12. Stephen, Dimity & Stahlschmidt, Stephan, 2021. "Performance and structures of the German science system 2021," Studien zum deutschen Innovationssystem 5-2021, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    13. Simon Zaby, 2019. "Science Mapping of the Global Knowledge Base on Microfinance: Influential Authors and Documents, 1989–2019," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    14. Ana Batlles-delaFuente & Luis Jesús Belmonte-Ureña & José Antonio Plaza-Úbeda & Emilio Abad-Segura, 2021. "Sustainable Business Model in the Product-Service System: Analysis of Global Research and Associated EU Legislation," IJERPH, MDPI, vol. 18(19), pages 1-33, September.
    15. Katarzyna Piwowar‐Sulej, 2021. "Core functions of Sustainable Human Resource Management. A hybrid literature review with the use of H‐Classics methodology," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 671-693, July.
    16. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    17. Myriam Dunn Cavelty, 2018. "Cybersecurity Research Meets Science and Technology Studies," Politics and Governance, Cogitatio Press, vol. 6(2), pages 22-30.
    18. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    19. Hsia-Ching Chang, 2016. "The Synergy of Scientometric Analysis and Knowledge Mapping with Topic Models: Modelling the Development Trajectories of Information Security and Cyber-Security Research," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33, December.
    20. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7855-:d:849448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.