IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3005-d513957.html
   My bibliography  Save this article

Laboratory Investigation of Compaction Characteristics of Plant Recycled Hot-Mix Asphalt Mixture

Author

Listed:
  • Jiangang Yang

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Chen Sun

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Wenjie Tao

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Jie Gao

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Bocheng Huang

    (Fujian Expressway Maintenance Engineering Co., Ltd., Fuzhou 350001, China)

  • Jian Zhang

    (Beijing Urban Construction Road and Bridge Construction Group Co., Ltd., Beijing 100088, China)

Abstract

In this study, the compaction characteristics of recycled hot-mix asphalt (RHMA) were evaluated using the void content ( VV ), compaction energy index ( CEI ), slope of accumulated compaction energy ( K ), and lock point ( LP ). Then, the effects of the compaction parameters, including the gradation of the RHMA, reclaimed asphalt pavement (RAP) content, temperature of gyrations, and number of gyrations, on the compaction characteristics of RHMA were investigated. An orthogonal experiment was designed and the data collected were analyzed via range analysis; then, a regression model was generated relying on a quadratic polynomial. Furthermore, the regression model was used for the comparison and prediction of the mixture’s compactability during the material design. Finally, the compaction mechanism of RHMA was discussed from the perspective of the void content of RAP particles. The results showed that a finer aggregate gradation, a higher gyration temperature, a greater number of gyrations, and a higher RAP content were effective for increasing the compactability of RHMA. The range analysis results suggest that the gradation of RHMA has the greatest influence on compactability, followed by the RAP content. The RAP aggregate cannot diffuse to a new mixture completely, so the remained RAP particle reduces the void content of RHMA. Therefore, a higher RAP content up to 50% can help RHMA to achieve the designed void content with higher efficiency.

Suggested Citation

  • Jiangang Yang & Chen Sun & Wenjie Tao & Jie Gao & Bocheng Huang & Jian Zhang, 2021. "Laboratory Investigation of Compaction Characteristics of Plant Recycled Hot-Mix Asphalt Mixture," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3005-:d:513957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan J. Galan & Luís M. Silva & Ignacio Pérez & Ana R. Pasandín, 2019. "Mechanical Behavior of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste: A Design of Experiments Approach," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You Wang & Hongdong Zhang & Zhuangzhuang Zhang, 2021. "Experimental Study on Mechanics and Water Stability of High Liquid Limit Soil Stabilized by Compound Stabilizer: A Sustainable Construction Perspective," Sustainability, MDPI, vol. 13(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    2. Carlos D. A. Loureiro & Caroline F. N. Moura & Mafalda Rodrigues & Fernando C. G. Martinho & Hugo M. R. D. Silva & Joel R. M. Oliveira, 2022. "Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry," Sustainability, MDPI, vol. 14(9), pages 1-31, April.
    3. Ali Mohammed Babalghaith & Suhana Koting & Nor Hafizah Ramli Sulong & Mohamed Rehan Karim & Syakirah Afiza Mohammed & Mohd Rasdan Ibrahim, 2020. "Effect of Palm Oil Clinker (POC) Aggregate on the Mechanical Properties of Stone Mastic Asphalt (SMA) Mixtures," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    4. Aleksandar Radević & Ivan Isailović & Michael P. Wistuba & Dimitrije Zakić & Marko Orešković & Goran Mladenović, 2020. "The Impact of Recycled Concrete Aggregate on the Stiffness, Fatigue, and Low-Temperature Performance of Asphalt Mixtures for Road Construction," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    5. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    6. Juan J. Galan & Luís M. Silva & Ana R. Pasandín & Ignacio Pérez, 2020. "Evaluation of the Resilient Modulus of Hot-Mix Asphalt Made with Recycled Concrete Aggregates from Construction and Demolition Waste," Sustainability, MDPI, vol. 12(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3005-:d:513957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.