IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2769-d510431.html
   My bibliography  Save this article

International Comparison of the Efficiency of Agricultural Science, Technology, and Innovation: A Case Study of G20 Countries

Author

Listed:
  • Xiangyu Guo

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Canhui Deng

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Dan Wang

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Xu Du

    (School of Economics, Harbin Normal University, Harbin 150025, China)

  • Jiali Li

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Bowen Wan

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

Abstract

An efficiency-oriented innovation analysis will enhance the understanding of the operational quality related to the transformation process of limited innovation investments for improving innovation outputs. The purpose of this study was to measure the static-dynamic efficiency of agricultural science, technology, and innovation (ASTI) and identify the efficiency determinants across the Group of Twenty (G20) countries. First, the static comprehensive efficiency of ASTI was measured employing the Data Envelopment Analysis (DEA)-BCC model, and some of the binding constraints to higher efficiency were investigated. Then, we applied the DEA-Malmquist index model to calculate the efficiency change of ASTI in certain periods and decomposed the sources of efficiency change. Finally, the G20 countries were classified into four-level clusters based on the rankings of efficiency measurement and capability evaluation of ASTI to locate the type of ASTI level and identify the type change in both the efficiency and capability. The empirical results indicate the following. (1) The efficiency range of the G20 developing countries was relatively larger than the G20 developed countries. The G20 developed countries showed a fluctuating downward trend, while the G20 developing countries showed an upward trend from the perspective of efficient proportion. The R&D expenditure redundancy and the agricultural journal papers deficiency were the main binding constraints to the higher efficiency of ASTI. (2) The total factor productivity change (TFPC) of ASTI showed an alternating trend of “decline–growth–continuous decline–growth recovery”, where the G20 developed countries experienced “growth–decline–growth” and the G20 developing countries underwent a fluctuating upward trend. The TFPC of ASTI in most G20 countries was primarily due to technological change. (3) The G20 developed countries usually had advantages in capacity, while the G20 developing countries performed better in efficiency.

Suggested Citation

  • Xiangyu Guo & Canhui Deng & Dan Wang & Xu Du & Jiali Li & Bowen Wan, 2021. "International Comparison of the Efficiency of Agricultural Science, Technology, and Innovation: A Case Study of G20 Countries," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2769-:d:510431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Bloch & Stan Metcalfe, 2018. "Innovation, creative destruction, and price theory," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(1), pages 1-13.
    2. Ta-Wei Pan & Shiu-Wan Hung & Wen-Min Lu, 2010. "Dea Performance Measurement Of The National Innovation System In Asia And Europe," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(03), pages 369-392.
    3. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    4. Dawit K. Mekonnen & David J. Spielman & Esendugue Greg Fonsah & Jeffrey H. Dorfman, 2015. "Innovation systems and technical efficiency in developing-country agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 46(5), pages 689-702, September.
    5. Siran Fang & Xiaoshan Xue & Ge Yin & Hong Fang & Jialin Li & Yongnian Zhang, 2020. "Evaluation and Improvement of Technological Innovation Efficiency of New Energy Vehicle Enterprises in China Based on DEA-Tobit Model," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Fare, Rolf & Grosskopf, Shawna & Kokkelenberg, Edward C, 1989. "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 655-666, August.
    8. Dan Wang & Xu Du & Jian Sun & Xiangyu Guo & Yao Chen, 2018. "Synergy of National Agricultural Innovation Systems," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    9. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    10. Tom Broekel & Nicky Rogge & Thomas Brenner, 2018. "The innovation efficiency of German regions – a shared-input DEA approach," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 38(1), pages 77-109, February.
    11. Kairui Zuo & Jiancheng Guan, 2017. "Measuring the R&D efficiency of regions by a parallel DEA game model," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 175-194, July.
    12. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2018. "The Effect of Sustainability as Innovation Objectives on Innovation Efficiency," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    13. Slobodan Perović & Sandro Radovanović & Vlasta Sikimić & Andrea Berber, 2016. "Optimal research team composition: data envelopment analysis of Fermilab experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 83-111, July.
    14. Wang, Eric C. & Huang, Weichiao, 2007. "Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach," Research Policy, Elsevier, vol. 36(2), pages 260-273, March.
    15. Yuanyuan Lin & Nianqi Deng & Hailian Gao, 2018. "Research on Technological Innovation Efficiency of Tourist Equipment Manufacturing Enterprises," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    16. Chen Kaihua & Kou Mingting, 2014. "Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 627-657, March.
    17. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    18. Wang, Eric C., 2007. "R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 345-360.
    19. Stepan Zemtsov & Maxim Kotsemir, 2019. "An assessment of regional innovation system efficiency in Russia: the application of the DEA approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 375-404, August.
    20. Wennekers, Sander & Thurik, Roy, 1999. "Linking Entrepreneurship and Economic Growth," Small Business Economics, Springer, vol. 13(1), pages 27-55, August.
    21. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    22. Jiancheng Guan & Kaihua Chen, 2010. "Modeling macro-R&D production frontier performance: an application to Chinese province-level R&D," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 165-173, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Yao & Guosong Wu, 2022. "Research on the Efficiency of Green Agricultural Science and Technology Innovation Resource Allocation Based on a Three-Stage DEA Model—A Case Study of Anhui Province, China," IJERPH, MDPI, vol. 19(20), pages 1-12, October.
    2. Xinping Li & Qiongxia Qin & Yongliang Yang, 2023. "The Impact of Green Innovation on Carbon Emissions: Evidence from the Construction Sector in China," Energies, MDPI, vol. 16(11), pages 1-23, June.
    3. Jinfa Li & Ruijie Qin & Hongbing Jiang, 2022. "Measurement of Innovation Efficiency in China’s Electronics and Communication Equipment Manufacturing Industry-Based on Dynamic Network SBM Model," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    4. Xueling Guan & Lijiang Chen & Qing Xia & Zhaohui Qin, 2022. "Innovation Efficiency of Chinese Pharmaceutical Manufacturing Industry from the Perspective of Innovation Ecosystem," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    5. Xinyu Lei & Jinna Li & Hao Li & Jvping Yan & Panfeng Li & Yifan Guo & Xinhui Huang & Yuting Zheng & Shaopeng Yang & Yimin Hu & Wangsheng Gao & Yuanquan Chen, 2023. "Regional Assessment at the Province Level of Agricultural Science and Technology Development in China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    2. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    3. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    4. Svetlana V. Ratner & Svetlana A. Balashova & Andrey V. Lychev, 2022. "The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach," Mathematics, MDPI, vol. 10(19), pages 1-23, October.
    5. Stepan Zemtsov & Maxim Kotsemir, 2019. "An assessment of regional innovation system efficiency in Russia: the application of the DEA approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 375-404, August.
    6. Jiawei Yang & Lei Fang, 2022. "Average lexicographic efficiency decomposition in two-stage data envelopment analysis: an application to China’s regional high-tech innovation systems," Annals of Operations Research, Springer, vol. 312(2), pages 1051-1093, May.
    7. Kangjuan Lv & Yu Cheng & Yousen Wang, 2021. "Does regional innovation system efficiency facilitate energy-related carbon dioxide intensity reduction in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 789-813, January.
    8. Jaeho Shin & Changhee Kim & Hongsuk Yang, 2019. "Does Reduction of Material and Energy Consumption Affect to Innovation Efficiency? The Case of Manufacturing Industry in South Korea," Energies, MDPI, vol. 12(6), pages 1-14, March.
    9. Vitor Miguel Ribeiro & Celeste Varum & Ana Dias Daniel, 2021. "Introducing microeconomic foundation in data envelopment analysis: effects of the ex ante regulation principle on regional performance," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1215-1244, September.
    10. Kai Xu & Bart Bossink & Qiang Chen, 2019. "Efficiency Evaluation of Regional Sustainable Innovation in China: A Slack-Based Measure (SBM) Model with Undesirable Outputs," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    11. Chen Kaihua & Kou Mingting, 2014. "Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 627-657, March.
    12. Kun Chen & Xian-tong Ren & Guo-liang Yang & Hai-bo Qin, 2022. "The other side of the coin: The declining of Chinese social science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 127-143, January.
    13. Wang, Qunwei & Hang, Ye & Sun, Licheng & Zhao, Zengyao, 2016. "Two-stage innovation efficiency of new energy enterprises in China: A non-radial DEA approach," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 254-261.
    14. Kontolaimou, Alexandra & Giotopoulos, Ioannis & Tsakanikas, Aggelos, 2016. "A typology of European countries based on innovation efficiency and technology gaps: The role of early-stage entrepreneurship," Economic Modelling, Elsevier, vol. 52(PB), pages 477-484.
    15. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Ron Boschma & Simona Iammarino & Raffaele Paci & Jordy Suriñach & Corinne Autant-Bernard & Sylvie Chalaye & Elisa Gagliardini & Stefano Usai, 2017. "European Knowledge Neighbourhood: Knowledge Production in EU Neighbouring Countries and Intensity of the Relationship with EU Countries," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 108(1), pages 52-75, February.
    17. Wang, Qian & Ren, Shuming, 2022. "Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Cullmann, Astrid & Zloczysti, Petra, 2013. "Towards an Efficient Use of R&D ? Accounting for Heterogeneity in the OECD," CEPR Discussion Papers 9345, C.E.P.R. Discussion Papers.
    19. Jianping Liu & Kai Lu & Shixiong Cheng, 2018. "International R&D Spillovers and Innovation Efficiency," Sustainability, MDPI, vol. 10(11), pages 1-23, October.
    20. He, Haonan & Li, Shiqiang & Wang, Shanyong & Zhang, Chaojia & Ma, Fei, 2023. "Value of dual-credit policy: Evidence from green technology innovation efficiency," Transport Policy, Elsevier, vol. 139(C), pages 182-198.

    More about this item

    Keywords

    agricultural science; technology and innovation; Innovation efficiency; DEA; G20;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2769-:d:510431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.