IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1234-d486540.html
   My bibliography  Save this article

Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa

Author

Listed:
  • Vincent Nzabarinda

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Anming Bao

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China)

  • Wenqiang Xu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China)

  • Solange Uwamahoro

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Liangliang Jiang

    (School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China)

  • Yongchao Duan

    (Binjiang College, Nanjing University of Information Engineering, Nanjing 210044, China)

  • Lamek Nahayo

    (Faculty of Environmental Studies, University of Lay Adventists of Kigali, 6392 Kigali, Rwanda)

  • Tao Yu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Ting Wang

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Gang Long

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of GIS & RS Application Xinjiang Uygur Autonomous Region, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Understanding the impacts of climate variability and change on terrestrial ecosystems in Africa remains a critical issue for ecology as well as for regional and global climate policy making. However, acquiring this knowledge can be useful for future predictions towards improved governance for sustainable development. In this study, we analyzed the spatial–temporal characteristics of vegetation greenness, and identified the possible relationships with climatic factors and vulnerable plant species across Africa. Using a set of robust statistical metrics on the Normalized Difference Vegetation Index (NDVI3g) for precipitation and temperature over 34 years from 1982 to 2015, relevant results were obtained. The findings show that, for NDVI, the annual rate of increase (0.013 y −1 ) was less than that of decrease (−0.014 y −1 ). In contrast, climate data showed a sharper increase than a marked decrease. Temperature is increasing while rainfall is decreasing, both at a sharp rate in central Africa. In Africa, tree cover, broadleaved, deciduous, closed to open (>15%) and shrubland plant species are critically endangered. The tropical vegetation devastated by the climate variability, causes different plant species to gradually perish; some were cleared out from the areas which experienced degradation, while others were from that of improvement. This study provides valuable information to African governments in order to improve environmental sustainability and development that will lead to the sustainability of natural resources.

Suggested Citation

  • Vincent Nzabarinda & Anming Bao & Wenqiang Xu & Solange Uwamahoro & Liangliang Jiang & Yongchao Duan & Lamek Nahayo & Tao Yu & Ting Wang & Gang Long, 2021. "Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1234-:d:486540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    2. Shuaishuai Li & Jiahua Zhang & Sha Zhang & Yun Bai & Dan Cao & Tiantian Cheng & Zhongtai Sun & Qi Liu & Til Prasad Pangali Sharma, 2021. "Impacts of Future Climate Changes on Spatio-Temporal Distribution of Terrestrial Ecosystems over China," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    3. Hanchen Duan & Yuan Qi & Wenping Kang & Jinlong Zhang & Hongwei Wang & Xiaofang Jiang, 2022. "Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China," Sustainability, MDPI, vol. 14(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Aragonés‐Beltrán & Mª. Carmen González‐Cruz & Astrid León‐Camargo & Rosario Viñoles‐Cebolla, 2023. "Assessment of regional development needs according to criteria based on the Sustainable Development Goals in the Meta Region (Colombia)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1101-1121, April.
    2. Liang Wu & Lin Guan & Feng Li & Qi Zhao & Yingjun Zhuo & Peng Chen & Yaotang Lv, 2018. "Optimal Dynamic Reactive Power Reserve for Wind Farms Addressing Short-Term Voltage Issues Caused by Wind Turbines Tripping," Energies, MDPI, vol. 11(7), pages 1-15, July.
    3. Umut Asan & Ayberk Soyer, 2022. "A Weighted Bonferroni-OWA Operator Based Cumulative Belief Degree Approach to Personnel Selection Based on Automated Video Interview Assessment Data," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    4. Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
    5. Muhammad Shehrayar Khan & Atif Rizwan & Muhammad Shahzad Faisal & Tahir Ahmad & Muhammad Saleem Khan & Ghada Atteia, 2022. "Identification of Review Helpfulness Using Novel Textual and Language-Context Features," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    6. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    7. Tarsitano Agostino & Lombardo Rosetta, 2013. "A Coefficient of Correlation Based on Ratios of Ranks and Anti-ranks," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(2), pages 206-224, April.
    8. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.
    9. Arthur Lehner & Christoph Erlacher & Matthias Schlögl & Jacob Wegerer & Thomas Blaschke & Klaus Steinnocher, 2018. "Can ISO-Defined Urban Sustainability Indicators Be Derived from Remote Sensing: An Expert Weighting Approach," Sustainability, MDPI, vol. 10(4), pages 1-31, April.
    10. Vanderford Courtney & Sang Yongli & Dang Xin, 2020. "Two symmetric and computationally efficient Gini correlations," Dependence Modeling, De Gruyter, vol. 8(1), pages 373-395, January.
    11. Markus Jäntti & Eva M. Sierminska & Philippe Van Kerm, 2015. "Modeling the Joint Distribution of Income and Wealth," Research on Economic Inequality, in: Measurement of Poverty, Deprivation, and Economic Mobility, volume 23, pages 301-327, Emerald Group Publishing Limited.
    12. repec:cte:wsrepe:es142416 is not listed on IDEAS
    13. Daniel J. Hernandez & Fernando Jaramillo & Hubert Kempf & Fabien Moizeau & Thomas Vendryes, 2023. "Limited Commitment, Social Control and Risk-Sharing Coalitions in Village Economies," Economics Working Paper Archive (University of Rennes 1 & University of Caen) 2023-03, Center for Research in Economics and Management (CREM), University of Rennes 1, University of Caen and CNRS.
    14. Gerald Oeser & Pietro Romano, 2021. "Exploring risk pooling in hospitals to reduce demand and lead time uncertainty," Operations Management Research, Springer, vol. 14(1), pages 78-94, June.
    15. Peng Wu & Yongze Song & Xin Hu & Xiangyu Wang, 2018. "A Preliminary Investigation of the Transition from Green Building to Green Community: Insights from LEED ND," Sustainability, MDPI, vol. 10(6), pages 1-14, May.
    16. Yanning Sun & Wei Qin & Zilong Zhuang, 2022. "Nonparametric-copula-entropy and network deconvolution method for causal discovery in complex manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1699-1713, August.
    17. Nayak, Purusottam & Mishra, Sudhanshu K, 2014. "A State Level Analysis of the Status of Social Sector in India," MPRA Paper 58136, University Library of Munich, Germany.
    18. Stephanou, Michael & Varughese, Melvin, 2021. "Sequential estimation of Spearman rank correlation using Hermite series estimators," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    19. Linda Menk & Christian Neuwirth & Stefan Kienberger, 2020. "Mapping the Structure of Social Vulnerability Systems for Malaria in East Africa," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    20. Rokhsareh Khashtabeh & Morteza Akbari & Mahdi Kolahi & Ali Talebanfard, 2021. "Assessing the effects of desertification control projects using socio-economic indicators in the arid regions of eastern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10455-10469, July.
    21. Sonja Rieder, 2012. "Robust parameter estimation for the Ornstein–Uhlenbeck process," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 411-436, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1234-:d:486540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.