IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p647-d478689.html
   My bibliography  Save this article

Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing

Author

Listed:
  • Ruomu Miao

    (School of Media and Communication, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yuxia Wang

    (School of Geographic Sciences, Key Lab of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China)

  • Shuang Li

    (Institute of Chinese Historical Geography, Fudan University, Shanghai 200433, China)

Abstract

With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial functions. Using VGI and social media activity data, this article developed a method to automatically extract and identify urban spatial patterns and functional zones. The method is put forward based on the case of Beijing, China, and includes the following three steps: (1) Obtain multi-source urban spatial data, such as Weibo data (equivalent to Twitter in Chinese), OpenStreetMap, population data, etc.; (2) Use the hierarchical clustering algorithm, term frequency-inverse document frequency (TF-IDF) method, and improved k-means clustering algorithms to identify functional zones; (3) Compare the identified results with the actual urban land uses and verify its accuracy. The experiment results proved that our method can effectively identify urban functional zones, and the results provide new ideas for the study of urban spatial patterns and have great significance in optimizing urban spatial planning.

Suggested Citation

  • Ruomu Miao & Yuxia Wang & Shuang Li, 2021. "Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:647-:d:478689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Younghoon Seo & Donghyun Lim & Woongbee Son & Yeongmin Kwon & Junghwa Kim & Hyungjoo Kim, 2020. "Deriving Mobility Service Policy Issues Based on Text Mining: A Case Study of Gyeonggi Province in South Korea," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    2. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    3. Wangbao Liu & Quan Hou & Zhihao Xie & Xin Mai, 2020. "Urban Network and Regions in China: An Analysis of Daily Migration with Complex Networks Model," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
    4. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    5. Guang Yang & Yan Han & Hao Gong & Tiantian Zhang, 2020. "Spatial-Temporal Response Patterns of Tourist Flow under Real-Time Tourist Flow Diversion Scheme," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya Li & Chunxia Liu & Yuechen Li, 2022. "Identification of Urban Functional Areas and Their Mixing Degree Using Point of Interest Analyses," Land, MDPI, vol. 11(7), pages 1-17, June.
    2. Mingyan Ni & Yindi Zhao & Caihong Ma & Xiaolin Hou & Yanmei Xie, 2023. "Exploring Relationships between Spatial Pattern Change in Steel Plants and Land Cover Change in Tangshan City," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    3. Yong Huang & Qinjun Kang & Qi Wang & Lili Luo & Tingting Wang & Qingrui Chang, 2022. "Multiscale Spatial Distribution Pattern and Influencing Factors on Inland Fishing Gardens in China," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    4. Guowei Luo & Jiayuan Ye & Jinfeng Wang & Yi Wei, 2023. "Urban Functional Zone Classification Based on POI Data and Machine Learning," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    5. Jiaxin Zhang & Zhilin Yu & Yunqin Li & Xueqiang Wang, 2023. "Uncovering Bias in Objective Mapping and Subjective Perception of Urban Building Functionality: A Machine Learning Approach to Urban Spatial Perception," Land, MDPI, vol. 12(7), pages 1-20, June.
    6. I-Cheng Chang & Tai-Kuei Yu & Yu-Jie Chang & Tai-Yi Yu, 2021. "Applying Text Mining, Clustering Analysis, and Latent Dirichlet Allocation Techniques for Topic Classification of Environmental Education Journals," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    7. Yao Chang & Dongbing Li & Zibibula Simayi & Shengtian Yang & Maliyamuguli Abulimiti & Yiwei Ren, 2022. "Spatial Pattern Analysis of Xinjiang Tourism Resources Based on Electronic Map Points of Interest," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    8. Yuewen Yang & Dongyan Wang & Zhuoran Yan & Shuwen Zhang, 2021. "Delineating Urban Functional Zones Using U-Net Deep Learning: Case Study of Kuancheng District, Changchun, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    9. Fangjie Cao & Yun Qiu & Qianxin Wang & Yan Zou, 2022. "Urban Form and Function Optimization for Reducing Carbon Emissions Based on Crowd-Sourced Spatio-Temporal Data," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    10. Zhenwei Wang & Xiaochun Wang & Zijin Dong & Lisan Li & Wangjun Li & Shicheng Li, 2023. "More Urban Elderly Care Facilities Should Be Placed in Densely Populated Areas for an Aging Wuhan of China," Land, MDPI, vol. 12(1), pages 1-13, January.
    11. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    12. El Bachir Diop & Jérôme Chenal & Stéphane Cédric Koumetio Tekouabou & Rida Azmi, 2022. "Crowdsourcing Public Engagement for Urban Planning in the Global South: Methods, Challenges and Suggestions for Future Research," Sustainability, MDPI, vol. 14(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Han & Jiabin Liu, 2018. "Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    2. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    3. Liu, Zhaoyang & Hanley, Nick & Campbell, Danny, 2020. "Linking urban air pollution with residents’ willingness to pay for greenspace: A choice experiment study in Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    4. Qing Ye & Yi Li & Wenzhe Shen & Zhaoze Xuan, 2023. "Division and Analysis of Accident-Prone Areas near Highway Ramps Based on Spatial Autocorrelation," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    5. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    6. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    7. Tianzheng Xiao & Huapu Lu & Jianyu Wang & Katrina Wang, 2021. "Predicting and Interpreting Spatial Accidents through MDLSTM," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    8. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    9. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    10. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    11. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    12. Chun Li & Jianhua He & Xingwu Duan, 2020. "The Relationship Exploration between Public Migration Attention and Population Migration from a Perspective of Search Query," IJERPH, MDPI, vol. 17(7), pages 1-18, April.
    13. Antonio Palazón-Bru & María José Prieto-Castelló & David Manuel Folgado-de la Rosa & Ana Macanás-Martínez & Emma Mares-García & María de los Ángeles Carbonell-Torregrosa & Vicente Francisco Gil-Guillé, 2020. "Development, and Internal, and External Validation of a Scoring System to Predict 30-Day Mortality after Having a Traffic Accident Traveling by Private Car or Van: An Analysis of 164,790 Subjects and ," IJERPH, MDPI, vol. 17(24), pages 1-13, December.
    14. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    15. Jung, Paul H. & Thill, Jean-Claude, 2022. "Sea-land interdependence and delimitation of port hinterland-foreland structures in the international transportation system," Journal of Transport Geography, Elsevier, vol. 99(C).
    16. Jianhua Ni & Tianlu Qian & Changbai Xi & Yikang Rui & Jiechen Wang, 2016. "Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis," IJERPH, MDPI, vol. 13(8), pages 1-13, August.
    17. Yandong Wang & Teng Wang & Ming-Hsiang Tsou & Hao Li & Wei Jiang & Fengqin Guo, 2016. "Mapping Dynamic Urban Land Use Patterns with Crowdsourced Geo-Tagged Social Media (Sina-Weibo) and Commercial Points of Interest Collections in Beijing, China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    18. Quanyi Zheng & Xiaolong Zhao & Mengxiao Jin, 2019. "Research on Urban Public Green Space Planning Based on Taxi Data: A Case Study on Three Districts of Shenzhen, China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    19. Wangbao Liu & Quan Hou & Zhihao Xie & Xin Mai, 2020. "Urban Network and Regions in China: An Analysis of Daily Migration with Complex Networks Model," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
    20. Lenormand, Maxime & Bassolas, Aleix & Ramasco, José J., 2016. "Systematic comparison of trip distribution laws and models," Journal of Transport Geography, Elsevier, vol. 51(C), pages 158-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:647-:d:478689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.