IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p463-d475544.html
   My bibliography  Save this article

Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010

Author

Listed:
  • Jian Feng

    (Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Yanguang Chen

    (Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

Abstract

Urban population density provides a good perspective for understanding urban growth and socio-spatial dynamics. Based on sub-district data of the five national censuses in 1964, 1982, 1990, 2000, and 2010, this paper is devoted to analyzing of urban growth and the spatial restructuring of the population in the city of Hangzhou, China. Research methods are based on mathematical modeling and field investigation. The modeling result shows that the negative exponential function and the power-exponential function can be well fitted to Hangzhou’s observational data of urban density. The negative exponential model reflects the expected state, while the power-exponential model reflects the real state of urban density distribution. The parameters of these models are linearly correlated to the spatial information entropy of population distribution. The fact that the density gradient in the negative exponential function flattened in the 1990s and 2000s is closely related to the development of suburbanization. In terms of investigation materials and the changing trend of model parameters, we can reveal the spatio-temporal features of Hangzhou’s urban growth. The main conclusions can be reached as follows. The policy of reformation and opening-up and the establishment of a market economy improved the development mode of Hangzhou. As long as a city has a good social and economic environment, it will automatically tend to the optimal state through self-organization.

Suggested Citation

  • Jian Feng & Yanguang Chen, 2021. "Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:463-:d:475544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J B Parr & G J O'Neill, 1989. "Aspects of the Lognormal Function in the Analysis of Regional Population Distribution," Environment and Planning A, , vol. 21(7), pages 961-973, July.
    2. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    3. Hernán D. Rozenfeld & Diego Rybski & Xavier Gabaix & Hernán A. Makse, 2011. "The Area and Population of Cities: New Insights from a Different Perspective on Cities," American Economic Review, American Economic Association, vol. 101(5), pages 2205-2225, August.
    4. Lucien Benguigui & Daniel Czamanski & Maria Marinov, 2001. "City Growth as a Leap-frogging Process: An Application to the Tel-Aviv Metropolis," Urban Studies, Urban Studies Journal Limited, vol. 38(10), pages 1819-1839, September.
    5. Francesca Mariani & Ilaria Zambon & Luca Salvati, 2018. "Population Matters: Identifying Metropolitan Sub-Centers from Diachronic Density-Distance Curves, 1960–2010," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    6. Yanguang Chen, 2008. "A Wave-Spectrum Analysis of Urban Population Density: Entropy, Fractal, and Spatial Localization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2008, pages 1-22, October.
    7. McDonald, John F., 1989. "Econometric studies of urban population density: A survey," Journal of Urban Economics, Elsevier, vol. 26(3), pages 361-385, November.
    8. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    9. Paul Longley & Victor Mesev, 1997. "Beyond Analogue Models: Space Filling And Density Measurement Of An Urban Settlement," Papers in Regional Science, Wiley Blackwell, vol. 76(4), pages 409-427, October.
    10. Chen, Yanguang, 2012. "The rank-size scaling law and entropy-maximizing principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 767-778.
    11. A. Stewart Fotheringham & Michael Batty & Paul A. Longley, 1989. "Diffusion‐Limited Aggregation And The Fractal Nature Of Urban Growth," Papers in Regional Science, Wiley Blackwell, vol. 67(1), pages 55-69, January.
    12. Yi Qiang & Jinwen Xu & Guohui Zhang, 2020. "The shapes of US cities: Revisiting the classic population density functions using crowdsourced geospatial data," Urban Studies, Urban Studies Journal Limited, vol. 57(10), pages 2147-2162, August.
    13. Michael Batty & Robin Morphet & Paolo Masucci & Kiril Stanilov, 2014. "Entropy, complexity, and spatial information," Journal of Geographical Systems, Springer, vol. 16(4), pages 363-385, October.
    14. Hang Ren & Wei Guo & Zhenke Zhang & Leonard Musyoka Kisovi & Priyanko Das, 2020. "Population Density and Spatial Patterns of Informal Settlements in Nairobi, Kenya," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Šveda, Martin & Madajová, Michala Sládeková, 2023. "Estimating distance decay of intra-urban trips using mobile phone data: The case of Bratislava, Slovakia," Journal of Transport Geography, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    2. Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.
    3. Lucien Benguigui & Efrat Blumenfeld-Lieberthal & Daniel Czamanski, 2006. "The Dynamics of the Tel Aviv Morphology," Environment and Planning B, , vol. 33(2), pages 269-284, April.
    4. Chen, Yanguang & Lin, Jingyi, 2009. "Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 615-629.
    5. Lucien Benguigui & Daniel Czamanski & Maria Marinov, 2001. "The Dynamics of Urban Morphology: The Case of Petah Tikvah," Environment and Planning B, , vol. 28(3), pages 447-460, June.
    6. Fei Liu & Qing Huang, 2019. "An Approach to Determining the Spatially Contiguous Zone of a Self-Organized Urban Agglomeration," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    7. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    8. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    9. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    10. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    11. Chen, Yanguang & Wang, Jiejing, 2014. "Recursive subdivision of urban space and Zipf’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 392-404.
    12. Rémi Lemoy & Geoffrey Caruso, 2020. "Evidence for the homothetic scaling of urban forms," Environment and Planning B, , vol. 47(5), pages 870-888, June.
    13. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    14. Qindong Fan & Fengtian Du & Hu Li, 2020. "A Study of the Spatial Form of Maling Village, Henan, China," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    15. Yanguang Chen & Yixing Zhou, 2003. "The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses," Environment and Planning B, , vol. 30(6), pages 799-818, December.
    16. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    17. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    18. Haosu Zhao & Bart Julien Dewancker & Feng Hua & Junping He & Weijun Gao, 2020. "Restrictions of Historical Tissues on Urban Growth, Self-Sustaining Agglomeration in Walled Cities of Chinese Origin," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    19. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    20. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:463-:d:475544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.