IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13664-d699611.html
   My bibliography  Save this article

Evaluating Trends of Land Productivity Change and Their Causes in the Han River Basin, China: In Support of SDG Indicator 15.3.1

Author

Listed:
  • Yanxia Hu

    (Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China)

  • Changqing Wang

    (Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China)

  • Xingxiu Yu

    (Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China)

  • Shengzhou Yin

    (Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China)

Abstract

The Han River Basin is a main agricultural production area and a water source for the middle route of the South-to-North Water Diversion Project in China. Over the past 20 years, human exploitation and ecological construction have disturbed the sustainability of land productivity in the Han River Basin. Theil–Sen trend analysis, Mann–Kendall statistical test, and Hurst index methods were applied to examine spatial–temporal trends and sustainability characteristics of land net primary productivity (NPP) change in the Han River Basin from 2001 to 2019 using MOD17A3 NPP product, natural, and socio-economic data obtained from Google Earth Engine (GEE). The findings demonstrated that the interannual variation of land NPP exhibited a fluctuating upward trend, with a more pronounced growth rate from 2001 to 2010 than from 2011 to 2019. The spatial heterogeneity of land NPP was evident, with high values in the west and low values in the east. Of the basin area, 57.82% presented a significant increase in land NPP, while only 0.96% showed a significant decrease. In the future, land NPP in the Han River Basin will present sustained growth. The results were also compared with Trends.Earth’s calculations for the SDG 15.3.1 sub-indicator of land productivity. In addition, the spatial heterogeneity of factors influencing land NPP change was explored using a multiscale geographically weighted regression (MGWR) model. Precipitation and population count were the dominant factors in most regions. Besides, precipitation, population count, and human modification all exhibited inhibitory effects on the increase in land NPP except for elevation. The research can provide a scientific basis for tracking land degradation neutrality (LDN) progress and achieving sustainable socio-ecological development of the Han River Basin.

Suggested Citation

  • Yanxia Hu & Changqing Wang & Xingxiu Yu & Shengzhou Yin, 2021. "Evaluating Trends of Land Productivity Change and Their Causes in the Han River Basin, China: In Support of SDG Indicator 15.3.1," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13664-:d:699611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oshan, Taylor M. & Smith, Jordan & Fotheringham, Alexander Stewart, 2020. "Targeting the spatial context of obesity determinants via multiscale geographically weighted regression," OSF Preprints u7j29, Center for Open Science.
    2. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    3. Shilong Piao & Zhuo Liu & Tao Wang & Shushi Peng & Philippe Ciais & Mengtian Huang & Anders Ahlstrom & John F. Burkhart & Frédéric Chevallier & Ivan A. Janssens & Su-Jong Jeong & Xin Lin & Jiafu Mao &, 2017. "Weakening temperature control on the interannual variations of spring carbon uptake across northern lands," Nature Climate Change, Nature, vol. 7(5), pages 359-363, May.
    4. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    2. Abolfazl Mollalo & Moosa Tatar, 2021. "Spatial Modeling of COVID-19 Vaccine Hesitancy in the United States," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    3. Sisman, S. & Aydinoglu, A.C., 2022. "A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul," Land Use Policy, Elsevier, vol. 119(C).
    4. Liang, Fachao & Zhu, Runmiao & Lin, Sheng-Hau, 2023. "Exploring spatial relationship between landscape configuration and ecosystem services: A case study of Xiamen–Zhangzhou–Quanzhou in China," Ecological Modelling, Elsevier, vol. 486(C).
    5. Cynthia Sin Tian Ho & Mats Wilhelmsson, 2022. "Geographical accessibility to bank branches and its relationship to new firm formation in Sweden via multiscale geographically weighted regression," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 42(2), pages 191-218, August.
    6. Weipeng Yuan & Hui Sun & Yu Chen & Xuechao Xia, 2021. "Spatio-Temporal Evolution and Spatial Heterogeneity of Influencing Factors of SO 2 Emissions in Chinese Cities: Fresh Evidence from MGWR," Sustainability, MDPI, vol. 13(21), pages 1-26, November.
    7. Huxiao Zhu & Xiangjun Ou & Zhen Yang & Yiwen Yang & Hongxin Ren & Le Tang, 2022. "Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(8), pages 1-21, August.
    8. Rémy Le Boennec & Julie Bulteau & Thierry Feuillet, 2022. "The role of commuter rail accessibility in the formation of residential land values: exploring spatial heterogeneity in peri-urban and remote areas," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(1), pages 163-186, August.
    9. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    10. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    11. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    12. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    14. Taylor M. Oshan & Levi J. Wolf & Mehak Sachdeva & Sarah Bardin & A. Stewart Fotheringham, 2022. "A scoping review on the multiplicity of scale in spatial analysis," Journal of Geographical Systems, Springer, vol. 24(3), pages 293-324, July.
    15. Oshan, Taylor M., 2022. "Navigating the methodological landscape in spatial analysis: a comment on ‘A Route Map for Successful Applications of Geographically-Weighted Regression’," OSF Preprints rckzj, Center for Open Science.
    16. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    18. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    19. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    20. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13664-:d:699611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.