IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3851-d355523.html
   My bibliography  Save this article

Dry Bean [ Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate

Author

Listed:
  • Abhijit Rai

    (Northern Ag Research Center, Montana State University, 3710 Assinniboine Road, Havre, MT 59501-8412, USA)

  • Vivek Sharma

    (Agricultural and Biological Engineering Department, University of Florida, P.O. Box 110570, Gainesville, FL 32611, USA)

  • Jim Heitholt

    (Department of Plant Sciences, Powell Research and Extension Center, University of Wyoming, 747 Road 9, Powell, WY 82435, USA)

Abstract

Understanding the crop growth and yield response to variable irrigation and the relationship between crop eco-physiological and morphological parameters is critical for identifying a balanced irrigation management strategy and developing decision support systems for early detection and information for on-ground decisions. Experiments were conducted to evaluate the effect of variable irrigation treatments on dry bean [ Phaseolus vulgaris L.] growth traits (plant height, leaf area index, normalized difference vegetation index), seed yield (SY), and yield components (pods plant −1 , seeds pod −1 , 100-seed weight (SW), and pod harvest index (PHI)) and to develop empirical models between dry bean growth and environmental conditions, SY, and yield components. Five irrigation treatments i.e., FIT (full irrigation treatment), 125% FIT, 75% FIT, 50% FIT, and 25% FIT were investigated. Water deficit at the beginning of the crop growth [vegetative growth (V1-V2) stage], dramatically reduced dry bean growth and development and resulted in a significant reduction in SY. However, the degree to which vegetative growth and SY was reduced depends on the weather conditions. Reducing irrigation by 25% below FIT resulted in an average reduction of 30% in SY. This reduction in SY was significantly correlated with a decline in pods plant −1 and SW. Moreover, the empirical models between growth traits and growing degree days (GDD) have a strong correlation, while growth traits and SY and yield components are moderately correlated. The data and empirical models presented in this research provide valuable information in predicting and estimating dry bean SY in-season and allow for corrective management decisions.

Suggested Citation

  • Abhijit Rai & Vivek Sharma & Jim Heitholt, 2020. "Dry Bean [ Phaseolus vulgaris L.] Growth and Yield Response to Variable Irrigation in the Arid to Semi-Arid Climate," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3851-:d:355523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorgos Papadavid & Diofantos Hadjimitsis & Leonidas Toulios & Silas Michaelides, 2013. "A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3493-3506, July.
    2. Webber, H.A. & Madramootoo, C.A. & Bourgault, M. & Horst, M.G. & Stulina, G. & Smith, D.L., 2006. "Water use efficiency of common bean and green gram grown using alternate furrow and deficit irrigation," Agricultural Water Management, Elsevier, vol. 86(3), pages 259-268, December.
    3. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    4. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2017. "The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 118-125.
    5. Yonts, C. Dean & Haghverdi, Amir & Reichert, David L. & Irmak, Suat, 2018. "Deficit irrigation and surface residue cover effects on dry bean yield, in-season soil water content and irrigation water use efficiency in western Nebraska high plains," Agricultural Water Management, Elsevier, vol. 199(C), pages 138-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teshome, Fitsum T. & Bayabil, Haimanote K. & Schaffer, Bruce & Ampatzidis, Yiannis & Hoogenboom, Gerrit & Singh, Aditya, 2023. "Exploring deficit irrigation as a water conservation strategy: Insights from field experiments and model simulation," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    3. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    4. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    5. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    6. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    7. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    8. Jian Yin & Chesheng Zhan & Wen Ye, 2016. "An Experimental Study on Evapotranspiration Data Assimilation Based on the Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5263-5279, November.
    9. Rezaei, Ehsan Eyshi & Gaiser, Thomas, 2017. "Change in crop management strategies could double the maize yield in Africa," Discussion Papers 260154, University of Bonn, Center for Development Research (ZEF).
    10. Yao Pan & Stephen C Smith & Munshi Sulaiman, 2018. "Agricultural Extension and Technology Adoption for Food Security: Evidence from Uganda," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(4), pages 1012-1031.
    11. Széles, Adrienn Ványiné & Megyes, Attila & Nagy, János, 2012. "Irrigation and nitrogen effects on the leaf chlorophyll content and grain yield of maize in different crop years," Agricultural Water Management, Elsevier, vol. 107(C), pages 133-144.
    12. Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.
    13. Moser, Samuel B. & Feil, Boy & Jampatong, Sansern & Stamp, Peter, 2006. "Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 41-58, March.
    14. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    16. Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.
    17. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    18. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    19. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr, 2017. "Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 29-35.
    20. Ratchaneewan Chuchird & Nophea Sasaki & Issei Abe, 2017. "Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand," Sustainability, MDPI, vol. 9(9), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3851-:d:355523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.