IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1780-d325894.html
   My bibliography  Save this article

Characterization of Excavated Waste of Different Ages in View of Multiple Resource Recovery in Landfill Mining

Author

Listed:
  • Isabella Pecorini

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, via C.F. Gabba 22, 56122 Pisa, Italy)

  • Renato Iannelli

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, via C.F. Gabba 22, 56122 Pisa, Italy)

Abstract

With the aim of examining the forcing factors in postmanagement landfills, in this study, excavation waste from nonhazardous municipal waste landfill in Tuscany was characterized for the first time. The specific objective was to estimate the feasibility of sampling and analyzing the excavated waste in order to define its properties and provide information about possible landfill mining projects. Based on the biochemical methane potential assays, it was shown that the excavated waste had not yet been stabilized (i.e., with a production of 52.2 ± 28.7 NlCH 4 /kgTS) in the landfill, probably due to the low excavated waste moisture content (36% ± 6% w/w). Furthermore, excavated waste has a high calorific value, i.e., 15.2 ± 4.1 MJ/kg; the quantity of combustibles in the industrial shredder waste (16 MJ/kg) was rather modest compared to that of municipal solid waste (20.8 MJ/Kg). In conclusion, during large scale excavation of the landfill, it was possible to evaluate how a dedicated treatment plant could be designed to treat and select waste which might appear in a different category. For excavated industrial waste, detailed mechanical sorting may be convenient for end-of-waste recovery to improve calorific value.

Suggested Citation

  • Isabella Pecorini & Renato Iannelli, 2020. "Characterization of Excavated Waste of Different Ages in View of Multiple Resource Recovery in Landfill Mining," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1780-:d:325894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Algimantas Bučinskas & Mait Kriipsalu & Gintaras Denafas, 2018. "Proposal for Feasibility Assessment Model for Landfill Mining and Its Implementation for Energy Generation Scenarios," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    2. Isabella Pecorini & Francesco Baldi & Renato Iannelli, 2019. "Biochemical Hydrogen Potential Tests Using Different Inocula," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fen Hou & Junjie Du & Ye Yuan & Xihui Wu & Sai Zhao, 2021. "Analysis of Microbial Communities in Aged Refuse Based on 16S Sequencing," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    2. Inna Pitak & Gintaras Denafas & Arūnas Baltušnikas & Marius Praspaliauskas & Stasė-Irena Lukošiūtė, 2023. "Proposal for Implementation of Extraction Mechanism of Raw Materials during Landfill Mining and Its Application in Alternative Fuel Production," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    3. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems," Sustainability, MDPI, vol. 12(7), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victoria E. Huntington & Frédéric Coulon & Stuart T. Wagland, 2022. "Innovative Resource Recovery from Industrial Sites: A Critical Review," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Baldi, F. & Pecorini, I. & Iannelli, R., 2019. "Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production," Renewable Energy, Elsevier, vol. 143(C), pages 1755-1765.
    3. Marat M. Khayrutdinov & Vladimir I. Golik & Alexander V. Aleksakhin & Ekaterina V. Trushina & Natalia V. Lazareva & Yulia V. Aleksakhina, 2022. "Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining," Resources, MDPI, vol. 11(10), pages 1-16, September.
    4. Isabella Pecorini & Eleonora Peruzzi & Elena Albini & Serena Doni & Cristina Macci & Grazia Masciandaro & Renato Iannelli, 2020. "Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    5. Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    6. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    7. Isabella Pecorini & Elena Rossi & Simone Becarelli & Francesco Baldi & Simona Di Gregorio & Renato Iannelli, 2023. "Wet Anaerobic Codigestion of Sewage Sludge and OFMSW in Pilot-Scale Continuously Stirred Tank Reactors: Focus on the Reactor Microbial Communities," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1780-:d:325894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.