IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8626-d430859.html
   My bibliography  Save this article

Design a Semantic Scale for Passenger Perceived Quality Surveys of Urban Rail Transit: Within Attribute’s Service Condition and Rider’s Experience

Author

Listed:
  • Weiya Chen

    (Rail Data Research and Application Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Zixuan Kang

    (Rail Data Research and Application Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Xiaoping Fang

    (Rail Data Research and Application Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Jiajia Li

    (Rail Data Research and Application Key Laboratory of Hunan Province, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

A better understanding of passenger perceived quality helps urban rail transit managers adopt better strategies to improve the service quality of urban rail transit, which is beneficial to the sustainable development of an urban rail transit system itself and cities. This paper designs a semantic scale to survey passenger perceived quality of urban rail transit. The methodology is selecting specific features of an attribute and then describing the features to present the attribute’s service condition and the rider’s experience. The scale’s options can reduce cognitive steps and hesitation for riders to answer the survey questionnaire. Furthermore, it enables urban rail transit managers to understand passenger perceived quality more visually. After verifying the reliability and validity of the semantic scale, an empirical study was conducted to compare the evaluation results of the proposed semantic scale, Likert, and numeric scales. Compared to the Likert and numeric scales, the evaluation result of the semantic scale is fairer for attributes with homogeneous service conditions over operation periods from the transit agency perspective. Meanwhile, it is more homogeneous for attributes with homogeneous service conditions and is more heterogeneous for attributes with heterogeneous service conditions.

Suggested Citation

  • Weiya Chen & Zixuan Kang & Xiaoping Fang & Jiajia Li, 2020. "Design a Semantic Scale for Passenger Perceived Quality Surveys of Urban Rail Transit: Within Attribute’s Service Condition and Rider’s Experience," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8626-:d:430859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hassan, Mohammad Nurul & Hawas, Yaser E. & Ahmed, Kamran, 2013. "A multi-dimensional framework for evaluating the transit service performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 47-61.
    2. Nathanail, Eftihia, 2008. "Measuring the quality of service for passengers on the hellenic railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 48-66, January.
    3. Beck, Matthew J. & Rose, John M., 2016. "The best of times and the worst of times: A new best–worst measure of attitudes toward public transport experiences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 108-123.
    4. dell'Olio, Luigi & Ibeas, Angel & Cecin, Patricia, 2011. "The quality of service desired by public transport users," Transport Policy, Elsevier, vol. 18(1), pages 217-227, January.
    5. Laura Eboli & Gabriella Mazzulla, 2008. "A Stated Preference Experiment for Measuring Service Quality in Public Transport," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(5), pages 509-523, February.
    6. Eboli, Laura & Mazzulla, Gabriella, 2011. "A methodology for evaluating transit service quality based on subjective and objective measures from the passenger's point of view," Transport Policy, Elsevier, vol. 18(1), pages 172-181, January.
    7. Aydin, Nezir, 2017. "A fuzzy-based multi-dimensional and multi-period service quality evaluation outline for rail transit systems," Transport Policy, Elsevier, vol. 55(C), pages 87-98.
    8. Echaniz, Eneko & Ho, Chinh Q. & Rodriguez, Andres & dell'Olio, Luigi, 2019. "Comparing best-worst and ordered logit approaches for user satisfaction in transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 752-769.
    9. de Oña, Juan & de Oña, Rocío & Eboli, Laura & Mazzulla, Gabriella, 2013. "Perceived service quality in bus transit service: A structural equation approach," Transport Policy, Elsevier, vol. 29(C), pages 219-226.
    10. Echaniz, Eneko & dell’Olio, Luigi & Ibeas, Ángel, 2018. "Modelling perceived quality for urban public transport systems using weighted variables and random parameters," Transport Policy, Elsevier, vol. 67(C), pages 31-39.
    11. Hernandez, Sara & Monzon, Andres & de Oña, Rocío, 2016. "Urban transport interchanges: A methodology for evaluating perceived quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 31-43.
    12. Guirao, Begoña & García-Pastor, Antonio & López-Lambas, María Eugenia, 2016. "The importance of service quality attributes in public transportation: Narrowing the gap between scientific research and practitioners' needs," Transport Policy, Elsevier, vol. 49(C), pages 68-77.
    13. Benedetto Barabino, 2018. "Automatic recognition of “low-quality” vehicles and bus stops in bus services," Public Transport, Springer, vol. 10(2), pages 257-289, August.
    14. Gatta, Valerio & Marcucci, Edoardo, 2007. "Quality and public transport service contracts," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 36, pages 92-106.
    15. Shen, Weiwei & Xiao, Weizhou & Wang, Xin, 2016. "Passenger satisfaction evaluation model for Urban rail transit: A structural equation modeling based on partial least squares," Transport Policy, Elsevier, vol. 46(C), pages 20-31.
    16. Yannis, Tyrinopoulos & Georgia, Aifadopoulou, 2008. "A complete methodology for the quality control of passenger services in the public transport business," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 38, pages 1-16.
    17. Zhang, Chunqin & Liu, Yong & Lu, Weite & Xiao, Guangnian, 2019. "Evaluating passenger satisfaction index based on PLS-SEM model: Evidence from Chinese public transport service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 149-164.
    18. Benedetto Barabino & Nicola Aldo Cabras & Claudio Conversano & Alessandro Olivo, 2020. "An Integrated Approach to Select Key Quality Indicators in Transit Services," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1045-1080, June.
    19. de Oña, Juan & de Oña, Rocío & Eboli, Laura & Mazzulla, Gabriella, 2016. "Index numbers for monitoring transit service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 18-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iván Manuel Mendoza-Arango & Eneko Echaniz & Luigi dell’Olio & Eduardo Gutiérrez-González, 2020. "Weighted Variables Using Best-Worst Scaling in Ordered Logit Models for Public Transit Satisfaction," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    2. Mandhani, Jyoti & Nayak, Jogendra Kumar & Parida, Manoranjan, 2020. "Interrelationships among service quality factors of Metro Rail Transit System: An integrated Bayesian networks and PLS-SEM approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 320-336.
    3. Eboli, Laura & Forciniti, Carmen & Mazzulla, Gabriella, 2018. "Spatial variation of the perceived transit service quality at rail stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 67-83.
    4. Rong, Rui & Liu, Lishan & Jia, Ning & Ma, Shoufeng, 2022. "Impact analysis of actual traveling performance on bus passenger’s perception and satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 80-100.
    5. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.
    6. Echaniz, Eneko & Ho, Chinh Q. & Rodriguez, Andres & dell'Olio, Luigi, 2019. "Comparing best-worst and ordered logit approaches for user satisfaction in transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 752-769.
    7. Ganji, S.S. & Ahangar, A.N. & Awasthi, Anjali & Jamshidi Bandari, Smaneh, 2021. "Psychological analysis of intercity bus passenger satisfaction using Q methodology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 345-363.
    8. Aydin, Nezir & Celik, Erkan & Gumus, Alev Taskin, 2015. "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 61-81.
    9. Aydin, Nezir, 2017. "A fuzzy-based multi-dimensional and multi-period service quality evaluation outline for rail transit systems," Transport Policy, Elsevier, vol. 55(C), pages 87-98.
    10. Benedetto Barabino & Nicola Aldo Cabras & Claudio Conversano & Alessandro Olivo, 2020. "An Integrated Approach to Select Key Quality Indicators in Transit Services," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(3), pages 1045-1080, June.
    11. Eneko Echaniz & Chinh Ho & Andres Rodriguez & Luigi dell’Olio, 2020. "Modelling user satisfaction in public transport systems considering missing information," Transportation, Springer, vol. 47(6), pages 2903-2921, December.
    12. Zhang, Chunqin & Liu, Yong & Lu, Weite & Xiao, Guangnian, 2019. "Evaluating passenger satisfaction index based on PLS-SEM model: Evidence from Chinese public transport service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 149-164.
    13. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2019. "The relationship between norms, satisfaction and public transport use: A comparison across six European cities using structural equation modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 37-57.
    14. Epstein, Bryan & Givoni, Moshe, 2016. "Analyzing the gap between the QOS demanded by PT users and QOS supplied by service operators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 622-637.
    15. Juan de Oña & Rocio de Oña, 2015. "Quality of Service in Public Transport Based on Customer Satisfaction Surveys: A Review and Assessment of Methodological Approaches," Transportation Science, INFORMS, vol. 49(3), pages 605-622, August.
    16. Wan, Dan & Kamga, Camille & Liu, Jun & Sugiura, Aaron & Beaton, Eric B., 2016. "Rider perception of a “light” Bus Rapid Transit system - The New York City Select Bus Service," Transport Policy, Elsevier, vol. 49(C), pages 41-55.
    17. Sajjakaj Jomnonkwao & Thanapong Champahom & Vatanavongs Ratanavaraha, 2020. "Methodologies for Determining the Service Quality of the Intercity Rail Service Based on Users’ Perceptions and Expectations in Thailand," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    18. Echaniz, Eneko & dell’Olio, Luigi & Ibeas, Ángel, 2018. "Modelling perceived quality for urban public transport systems using weighted variables and random parameters," Transport Policy, Elsevier, vol. 67(C), pages 31-39.
    19. Machado-León, José Luis & de Oña, Rocío & Baouni, Tahar & de Oña, Juan, 2017. "Railway transit services in Algiers: priority improvement actions based on users perceptions," Transport Policy, Elsevier, vol. 53(C), pages 175-185.
    20. Ghosh, Piyali & Ojha, Mohit Kr. & Geetika,, 2017. "Determining passenger satisfaction out of platform-based amenities: A study of Kanpur Central Railway Station," Transport Policy, Elsevier, vol. 60(C), pages 108-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8626-:d:430859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.