IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p405-d305174.html
   My bibliography  Save this article

Regionalization of Agricultural Nonpoint Source Pollution over China with a Combination of Qualitative and Quantitative Method

Author

Listed:
  • Qiang Fu

    (Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing 100101, China
    College of Tourism, Henan Normal University, Xinxiang 453007, China)

  • Yunqiang Zhu

    (Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing 100101, China)

  • Shengli Huang

    (ASRC Research and Technology Solutions, Contractor to the USA Geological Survey Earth Resources Observation and Science Center, Sioux Falls, SD 47914, USA)

Abstract

Agricultural nonpoint source pollution has been a serious problem in China; however, currently a lack of basic data and quantitative analysis hinders control and reduction of agricultural nonpoint source pollution. Therefore, it is necessary to explore a regionalization method in the study of nationwide agricultural nonpoint source pollution over China. This paper proposes a method of combining both quantitative calculation and qualitative analysis. Based on agricultural nonpoint source pollution mechanism, we first proposed the natural environment index, which was calculated from relief degree of land surface, thermal humidity index, water resources quantity and precipitation index, and land cover index. Second, we proposed basic agricultural environment index, which was calculated based on the area of cultivated land use and the quality of integrated soil fertility. Third, we simplified the spatial distribution of natural environment and basic agricultural environment with the method of choropleth map classification, thematic map series, and gravity centers curve. Fourth, we conducted a qualitative analysis for both the natural environment and basic agricultural environment by overlaying the classification and existing regionalization maps to reveal the intra-region homogeneity and inter-region heterogeneity with a high reliability. The regionalization method used in this study resulted in a nationwide regional zoning of agricultural nonpoint source pollution over China, and China can be divided into 10 regions, which can be a trustworthy reference for agricultural nonpoint source pollution study and management.

Suggested Citation

  • Qiang Fu & Yunqiang Zhu & Shengli Huang, 2020. "Regionalization of Agricultural Nonpoint Source Pollution over China with a Combination of Qualitative and Quantitative Method," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:405-:d:305174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    2. Cho, Jaepil & Park, Seungwoo & Im, Sangjun, 2008. "Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation," Agricultural Water Management, Elsevier, vol. 95(4), pages 400-408, April.
    3. Liu, M. & Huang, G.H. & Liao, R.F. & Li, Y.P. & Xie, Y.L., 2013. "Fuzzy two-stage non-point source pollution management model for agricultural systems—A case study for the Lake Tai Basin, China," Agricultural Water Management, Elsevier, vol. 121(C), pages 27-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Zhou & Fan Zhang & Shihao Cui & Ke-Chiun Chang, 2022. "Is There Always a Negative Causality between Human Health and Environmental Degradation? Current Evidence from Rural China," IJERPH, MDPI, vol. 19(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    3. Kui Cai & Chang Li, 2022. "Ecological Risk, Input Flux, and Source of Heavy Metals in the Agricultural Plain of Hebei Province, China," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    4. Alam, Md Jahangir & Dutta, Dushmanta, 2012. "A process-based and distributed model for nutrient dynamics in river basin: Development, testing and applications," Ecological Modelling, Elsevier, vol. 247(C), pages 112-124.
    5. Zhang, Xiaodong & Huang, Guo H. & Nie, Xianghui, 2009. "Optimal decision schemes for agricultural water quality management planning with imprecise objective," Agricultural Water Management, Elsevier, vol. 96(12), pages 1723-1731, December.
    6. Shen, Zhenyao & Hong, Qian & Chu, Zheng & Gong, Yongwei, 2011. "A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China," Agricultural Water Management, Elsevier, vol. 98(6), pages 977-989, April.
    7. H. Vijith & L. W. Seling & D. Dodge-Wan, 2018. "Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1365-1384, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:405-:d:305174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.