IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7822-d417309.html
   My bibliography  Save this article

Analysis of Operational Changes of Tarbela Reservoir to Improve the Water Supply, Hydropower Generation, and Flood Control Objectives

Author

Listed:
  • Ahmed Rafique

    (Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA)

  • Steven Burian

    (Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA)

  • Daniyal Hassan

    (Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA)

  • Rakhshinda Bano

    (U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro City, Sindh 76062, Pakistan)

Abstract

In this study, a model was created with the Water Evaluation and Planning (WEAP) System and used to explore the benefits of altering the operations of Tarbela Dam in terms of reliability, resilience, and vulnerability (RRV) for the three objectives of irrigation supply, hydropower generation, and flood control. Sensitivity analysis and logical reasoning with operators identified a feasible operational rule curve for testing using the integrated performance analysis. The reservoir performance for the altered operations was compared to the baseline performance following current operations for both historical and projected future climate and water demand conditions. Key simulation results show that the altered operations strategy tested under historical climate and water demand conditions would increase RRV by 17%, 67%, and 7%, respectively, for the water supply objective and 34%, 346%, and 22%, respectively, for hydropower generation. For projected future conditions, the proposed operations strategy would increase RRV by 7%, 219%, and 11%, respectively, for water supply and 19%, 136%, and 13% for hydropower generation. Synthesis of the results suggests significant benefits for reliability and resilience of water supply and hydropower are possible with slight operational adjustments. Overall, the integrated performance analysis supports the need to develop an optimized operations rule for Tarbela to adapt to projected climate and demand scenarios.

Suggested Citation

  • Ahmed Rafique & Steven Burian & Daniyal Hassan & Rakhshinda Bano, 2020. "Analysis of Operational Changes of Tarbela Reservoir to Improve the Water Supply, Hydropower Generation, and Flood Control Objectives," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7822-:d:417309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Winston Yu & Yi-Chen Yang & Andre Savitsky & Donald Alford & Casey Brown & James Wescoat & Dario Debowicz & Sherman Robinson, 2013. "Indus Basin of Pakistan : Impacts of Climate Risks on Water and Agriculture," World Bank Publications - Books, The World Bank Group, number 13834, December.
    2. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    3. Emma Tate & Frank Farquharson, 2000. "Simulating Reservoir Management under the Threat of Sedimentation: The Case of Tarbela Dam on the River Indus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(3), pages 191-208, June.
    4. James R. Hunt & Julianne M. Lilley & Ben Trevaskis & Bonnie M. Flohr & Allan Peake & Andrew Fletcher & Alexander B. Zwart & David Gobbett & John A. Kirkegaard, 2019. "Early sowing systems can boost Australian wheat yields despite recent climate change," Nature Climate Change, Nature, vol. 9(3), pages 244-247, March.
    5. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    6. A. F. Lutz & W. W. Immerzeel & A. B. Shrestha & M. F. P. Bierkens, 2014. "Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation," Nature Climate Change, Nature, vol. 4(7), pages 587-592, July.
    7. Patrick A. Ray & Casey M. Brown, 2015. "Confronting Climate Uncertainty in Water Resources Planning and Project Design," World Bank Publications - Books, The World Bank Group, number 22544, December.
    8. Noor Khan & Mukand Babel & Tawatchai Tingsanchali & Roberto Clemente & Huynh Luong, 2012. "Reservoir Optimization-Simulation with a Sediment Evacuation Model to Minimize Irrigation Deficits," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3173-3193, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    2. Amin Hira & Muhammad Arif & Nowsherwan Zarif & Zarmina Gul & Xiangyue Liu & Yukun Cao, 2022. "Impacts of Stressors on Riparian Health Indicators in the Upper and Lower Indus River Basins in Pakistan," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    3. Mohammad Naser Sediqi & Daisuke Komori, 2023. "Assessing Water Resource Sustainability in the Kabul River Basin: A Standardized Runoff Index and Reliability, Resilience, and Vulnerability Framework Approach," Sustainability, MDPI, vol. 16(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Usman Rashid & Abid Latif & Muhammad Azmat, 2018. "Optimizing Irrigation Deficit of Multipurpose Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1675-1687, March.
    2. N. Adam & S. Erpicum & P. Archambeau & M. Pirotton & B. Dewals, 2015. "Stochastic Modelling of Reservoir Sedimentation in a Semi-Arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 785-800, February.
    3. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    4. Gulraiz Akhter & Yonggang Ge & Naveed Iqbal & Yanjun Shang & Muhammad Hasan, 2021. "Appraisal of Remote Sensing Technology for Groundwater Resource Management Perspective in Indus Basin," Sustainability, MDPI, vol. 13(17), pages 1-12, August.
    5. Muhammad Rashid & Abdul Shakir & Noor Khan & Abid Latif & Muhammad Qureshi, 2015. "Optimization of Multiple Reservoirs Operation with Consideration to Sediment Evacuation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2429-2450, May.
    6. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    7. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    8. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    9. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    11. Muhammad Aslam & Muhammad Arshad & Vijay P. Singh & Muhammad Adnan Shahid, 2022. "Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    12. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    13. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    14. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    15. Venot, Jean-Philippe & Reddy, V. Ratna & Umapathy, Deeptha, 2010. "Coping with drought in irrigated South India: Farmers' adjustments in Nagarjuna Sagar," Agricultural Water Management, Elsevier, vol. 97(10), pages 1434-1442, October.
    16. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    17. Salvatore Barbagallo & Simona Consoli & Nello Pappalardo & Salvatore Greco & Santo Zimbone, 2006. "Discovering Reservoir Operating Rules by a Rough Set Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 19-36, February.
    18. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    19. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    20. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7822-:d:417309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.