IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6644-d400027.html
   My bibliography  Save this article

Vegetation Changes and Their Response to Global Change Based on NDVI in the Koshi River Basin of Central Himalayas Since 2000

Author

Listed:
  • Xue Wu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China)

  • Xiaomin Sun

    (Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

  • Zhaofeng Wang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yili Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    Kathmandu Center for Research and Education, Chinese Academy of Sciences-Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal)

  • Qionghuan Liu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

  • Binghua Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Basanta Paudel

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
    Kathmandu Center for Research and Education, Chinese Academy of Sciences-Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal)

  • Fangdi Xie

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China)

Abstract

Vegetation forms a main component of the terrestrial biosphere owing to its crucial role in land cover and climate change, which has been of wide concern for experts and scholars. In this study, we used MODIS (moderate-resolution imaging spectroradiometer) NDVI (Normalized Difference Vegetation Index) data, land cover data, meteorological data, and DEM (Digital Elevation Model) data to do vegetation change and its relationship with climate change. First, we investigated the spatio-temporal patterns and variations of vegetation activity in the Koshi River Basin (KRB) in the central Himalayas from 2000 to 2018. Then, we combined NDVI change with climate factors using the linear method to examine their relationship, after that we used the literature review method to explore the influence of human activities to vegetation change. At the regional scale, the NDVI GS (Growth season NDVI) significantly increased in the KRB in 2000–2018, with significant greening over croplands in KRB in India. Further, the croplands and forest in the KRB in Nepal were mainly influenced by human interference. For example, improvements in agricultural fertilization and irrigation facilities as well as the success of the community forestry program in the KRB in Nepal increased the NDVI GS of the local forest. Climate also had a certain impact on the increase in NDVI GS . A significant negative correlation was observed between NDVI GS trend and the annual minimum temperature trend (TMN) in the KRB in India, but an insignificant positive correlation was noted between it and the total annual precipitation trend (PRE). NDVI GS significantly decreased over a small area, mainly around Kathmandu, due to urbanization. Increases in NDVI GS in the KRB have thus been mainly affected by human activities, and climate change has helped increase it to a certain extent.

Suggested Citation

  • Xue Wu & Xiaomin Sun & Zhaofeng Wang & Yili Zhang & Qionghuan Liu & Binghua Zhang & Basanta Paudel & Fangdi Xie, 2020. "Vegetation Changes and Their Response to Global Change Based on NDVI in the Koshi River Basin of Central Himalayas Since 2000," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6644-:d:400027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omvir Singh & Dinesh Kumar, 2019. "Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 247-268, March.
    2. Qionghuan Liu & Xiuhong Wang & Yili Zhang & Huamin Zhang & Lanhui Li, 2019. "Vegetation Degradation and Its Driving Factors in the Farming–Pastoral Ecotone over the Countries along Belt and Road Initiative," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    3. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    4. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    3. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    4. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    5. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    7. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    8. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    9. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    10. Yungang Hu & Guangchao Li & Wei Chen, 2022. "Remote Sensing of Ecosystem Water Use Efficiency in Different Ecozones of the North China Plain," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    11. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    12. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    13. Lausch, Angela & Salbach, Christoph & Schmidt, Andreas & Doktor, Daniel & Merbach, Ines & Pause, Marion, 2015. "Deriving phenology of barley with imaging hyperspectral remote sensing," Ecological Modelling, Elsevier, vol. 295(C), pages 123-135.
    14. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    15. Mette, Tobias & Albrecht, Axel & Ammer, Christian & Biber, Peter & Kohnle, Ulrich & Pretzsch, Hans, 2009. "Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany," Ecological Modelling, Elsevier, vol. 220(13), pages 1670-1680.
    16. Chenglai Wu & Zhaohui Lin & Yaping Shao & Xiaohong Liu & Ying Li, 2022. "Drivers of recent decline in dust activity over East Asia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Xunming Wang & Quansheng Ge & Xin Geng & Zhaosheng Wang & Lei Gao & Brett A. Bryan & Shengqian Chen & Yanan Su & Diwen Cai & Jiansheng Ye & Jimin Sun & Huayu Lu & Huizheng Che & Hong Cheng & Hongyan L, 2023. "Unintended consequences of combating desertification in China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.
    19. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6644-:d:400027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.