IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1387-d211445.html
   My bibliography  Save this article

Modeling Constraints for the On-Site Assembly Process of Prefabrication Housing Production: A Social Network Analysis

Author

Listed:
  • Pan Gong

    (School of Construction Management and Real Estate, Chongqing University, Chongqing 400044, China)

  • Yue Teng

    (Department of Civil Engineering, the University of Hong Kong, Hong Kong, China)

  • Xiao Li

    (Department of Building and Real Estate, the Hong Kong Polytechnic University, Hong Kong, China)

  • Lizi Luo

    (Department of Building and Real Estate, the Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Although prefabrication housing production (PHP) has been widely advocated with advantages like ensured good quality and secured workplaces, its poor interoperability and fragmentation still causes various constraints, limiting the progress of projects. This paper aims to model the constraints and their relationships in task executions of different trades during the on-site assembly process of PHP. It was conducted through a typical PHP case study in Hong Kong to identify the critical trade associated constraints and their links during the on-site assembly process. Original data were collected by semi-structured interview, Delphi survey and questionnaire with representative professionals from the case. Social Network Analysis (SNA) was used to model the constraints and their interrelationships. The results indicated that seven trade-associated constraints were worth more attention. Three significant challenges were determined, indicating that the on-site team should focus on the availability of labor resources, optimal installation planning and effectiveness of communication mechanism. Smart work packaging (SWP)-enabled system for achieving automatic constraint identification and dynamic constraint relationship mapping under different constraint scenarios was suggested. This paper offers practical insights for scholars to conduct a trade-associated constraint identification study in the network manner and is expected to benefit practitioners on using the results for decision-making.

Suggested Citation

  • Pan Gong & Yue Teng & Xiao Li & Lizi Luo, 2019. "Modeling Constraints for the On-Site Assembly Process of Prefabrication Housing Production: A Social Network Analysis," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1387-:d:211445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lara Jaillon & C. S. Poon, 2008. "Sustainable construction aspects of using prefabrication in dense urban environment: a Hong Kong case study," Construction Management and Economics, Taylor & Francis Journals, vol. 26(9), pages 953-966.
    2. Lu, Weisheng & Yuan, Hongping, 2013. "Investigating waste reduction potential in the upstream processes of offshore prefabrication construction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 804-811.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Ying Zhao & Yangqing Yu & Kaiman Chen & Mehrdad Arashpour, 2020. "Collaborative Scheduling of On-Site and Off-Site Operations in Prefabrication," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
    2. Zezhou Wu & Lirong Luo & Heng Li & Ying Wang & Guoqiang Bi & Maxwell Fordjour Antwi-Afari, 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability," IJERPH, MDPI, vol. 18(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    4. Li, Zhengdao & Shen, Geoffrey Qiping & Alshawi, Mustafa, 2014. "Measuring the impact of prefabrication on construction waste reduction: An empirical study in China," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 27-39.
    5. Zhong-Lei Wang & Hou-Cai Shen & Jian Zuo, 2019. "Risks in Prefabricated Buildings in China: Importance-Performance Analysis Approach," Sustainability, MDPI, vol. 11(12), pages 1-13, June.
    6. Ravijanya Chippagiri & Hindavi R. Gavali & Rahul V. Ralegaonkar & Mike Riley & Andy Shaw & Ana Bras, 2021. "Application of Sustainable Prefabricated Wall Technology for Energy Efficient Social Housing," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    7. Pero, Margherita & Stößlein, Martin & Cigolini, Roberto, 2015. "Linking product modularity to supply chain integration in the construction and shipbuilding industries," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 602-615.
    8. Akinade, Olugbenga O. & Oyedele, Lukumon O. & Bilal, Muhammad & Ajayi, Saheed O. & Owolabi, Hakeem A. & Alaka, Hafiz A. & Bello, Sururah A., 2015. "Waste minimisation through deconstruction: A BIM based Deconstructability Assessment Score (BIM-DAS)," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 167-176.
    9. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.
    10. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    11. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    12. Wen Jiang & Zhu Huang & Ying Peng & Yaqi Fang & Yunzhong Cao, 2020. "Factors affecting prefabricated construction promotion in China: A structural equation modeling approach," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    13. Kaicheng Shen & Chen Cheng & Xiaodong Li & Zhihui Zhang, 2019. "Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    14. Truong Dang Hoang Nhat Nguyen & Hyosoo Moon & Yonghan Ahn, 2022. "Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    15. Hosang Hyun & Hyung-Geun Kim & Jin-Sung Kim, 2022. "Integrated Off-Site Construction Design Process including DfMA Considerations," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    16. Lin Zhang & Shan Guo & Zezhou Wu & Ahmed Alsaedi & Tasawar Hayat, 2018. "SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China," Energies, MDPI, vol. 11(4), pages 1-17, April.
    17. Alasdair Reid, 2023. "Closing the Affordable Housing Gap: Identifying the Barriers Hindering the Sustainable Design and Construction of Affordable Homes," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    18. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    19. Chen, Wendy Y. & Hua, Junyi, 2017. "Heterogeneity in resident perceptions of a bio-cultural heritage in Hong Kong: A latent class factor analysis," Ecosystem Services, Elsevier, vol. 24(C), pages 170-179.
    20. Kangning Liu & Yikun Su & Shoujian Zhang, 2018. "Evaluating Supplier Management Maturity in Prefabricated Construction Project-Survey Analysis in China," Sustainability, MDPI, vol. 10(9), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1387-:d:211445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.