IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5174-d269341.html
   My bibliography  Save this article

Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing

Author

Listed:
  • Botlhe Matlhodi

    (Department of Environmental Science, Faculty of Science, University of Botswana, P/Bag UB 00704 Gaborone, Botswana)

  • Piet K. Kenabatho

    (Department of Environmental Science, Faculty of Science, University of Botswana, P/Bag UB 00704 Gaborone, Botswana)

  • Bhagabat P. Parida

    (Department of Civil Engineering, Faculty of Engineering and Technology, University of Botswana, P/Bag UB 0061 Gaborone, Botswana)

  • Joyce G. Maphanyane

    (Department of Environmental Science, Faculty of Science, University of Botswana, P/Bag UB 00704 Gaborone, Botswana)

Abstract

Land use land cover (LULC) change is one of the major driving forces of global environmental change in many developing countries. In this study, LULC changes were evaluated in the Gaborone dam catchment in Botswana between 1984 and 2015. The catchment is a major source of water supply to Gaborone city and its surrounding areas. The study employed Remote Sensing and Geographical Information System (GIS) using Landsat imagery of 1984, 1995, 2005 and 2015. Image classification for each of these imageries was done through supervised classification using the Maximum Likelihood Classifier. Six major LULC categories, cropland, bare land, shrub land, built-up area, tree savanna and water bodies, were identified in the catchment. It was observed that shrub land and tree savanna were the major LULC categories between 1984 and 2005 while shrub land and cropland dominated the catchment area in 2015. The rates of change were generally faster in the 1995–2005 and 2005–2015 periods. For these periods, built-up areas increased by 59.8 km 2 (108.3%) and 113.2 km 2 (98.5%), respectively, while bare land increased by 50.3 km 2 (161.1%) and 99.1 km 2 (121.5%). However, in the overall period between 1984 and 2015, significant losses were observed for shrub land, 763 km 2 (29.4%) and tree savanna, 674 km 2 (71.3%). The results suggest the need to closely monitor LULC changes at a catchment scale to facilitate water resource management and to maintain a sustainable environment.

Suggested Citation

  • Botlhe Matlhodi & Piet K. Kenabatho & Bhagabat P. Parida & Joyce G. Maphanyane, 2019. "Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5174-:d:269341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Lubowski, Ruben N. & Bucholtz, Shawn & Claassen, Roger & Roberts, Michael J. & Cooper, Joseph C. & Gueorguieva, Anna & Johansson, Robert C., 2006. "Environmental Effects Of Agricultural Land-Use Change: The Role Of Economics And Policy," Economic Research Report 33591, United States Department of Agriculture, Economic Research Service.
    3. Peter H Verburg & Jan R Ritsema van Eck & Ton C M de Nijs & Martin J Dijst & Paul Schot, 2004. "Determinants of Land-Use Change Patterns in the Netherlands," Environment and Planning B, , vol. 31(1), pages 125-150, February.
    4. McGill, B. M. & Altchenko, Yvan & Hamilton, S. K. & Kenabatho, P. K. & Sylvester, S. R. & Villholth, Karen G., 2019. "Complex interactions between climate change, sanitation, and groundwater quality: a case study from Ramotswa, Botswana," Papers published in Journals (Open Access), International Water Management Institute, pages 27(3):997-1.
    5. Jonathan M. Kamwi & Moses A. Cho & Christoph Kaetsch & Samuel O. Manda & Friedrich P. Graz & Paxie W. Chirwa, 2018. "Assessing the Spatial Drivers of Land Use and Land Cover Change in the Protected and Communal Areas of the Zambezi Region, Namibia," Land, MDPI, vol. 7(4), pages 1-13, November.
    6. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    7. Dale Blair & Charlie M. Shackleton & Penelope J. Mograbi, 2018. "Cropland Abandonment in South African Smallholder Communal Lands: Land Cover Change (1950–2010) and Farmer Perceptions of Contributing Factors," Land, MDPI, vol. 7(4), pages 1-20, October.
    8. Akinyemi, Felicia O. & Mashame, Gofamodimo, 2018. "Analysis of land change in the dryland agricultural landscapes of eastern Botswana," Land Use Policy, Elsevier, vol. 76(C), pages 798-811.
    9. John Tyler Fox & Mark E. Vandewalle & Kathleen A. Alexander, 2017. "Land Cover Change in Northern Botswana: The Influence of Climate, Fire, and Elephants on Semi-Arid Savanna Woodlands," Land, MDPI, vol. 6(4), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain Mohammad Arifeen & Md. Shahariar Chowdhury & Haoran Zhang & Tanita Suepa & Nowshad Amin & Kuaanan Techato & Warangkana Jutidamrongphan, 2021. "Role of a Mine in Changing Its Surroundings—Land Use and Land Cover and Impact on the Natural Environment in Barapukuria, Bangladesh," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    2. Dawit Samuel Teshome & Habitamu Taddese & Terefe Tolessa & Moges Kidane & Songcai You, 2022. "Drivers and Implications of Land Cover Dynamics in Muger Sub-Basin, Abay Basin, Ethiopia," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    3. Ephias Mugari & Hillary Masundire & Maitseo Bolaane, 2020. "Adapting to Climate Change in Semi-Arid Rural Areas: A Case of the Limpopo Basin Part of Botswana," Sustainability, MDPI, vol. 12(20), pages 1-34, October.
    4. Ephias Mugari & Hillary Masundire, 2022. "Consistent Changes in Land-Use/Land-Cover in Semi-Arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana," Land, MDPI, vol. 11(11), pages 1-20, November.
    5. Bhanage Vinayak & Han Soo Lee & Shirishkumar Gedem, 2021. "Prediction of Land Use and Land Cover Changes in Mumbai City, India, Using Remote Sensing Data and a Multilayer Perceptron Neural Network-Based Markov Chain Model," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    6. Jamal Suliman Alawamy & Siva K. Balasundram & Ahmad Husni Mohd. Hanif & Christopher Teh Boon Sung, 2020. "Detecting and Analyzing Land Use and Land Cover Changes in the Region of Al-Jabal Al-Akhdar, Libya Using Time-Series Landsat Data from 1985 to 2017," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    7. Wakjira Takala Dibaba & Tamene Adugna Demissie & Konrad Miegel, 2020. "Drivers and Implications of Land Use/Land Cover Dynamics in Finchaa Catchment, Northwestern Ethiopia," Land, MDPI, vol. 9(4), pages 1-20, April.
    8. Owais Bashir & Shabir Ahmad Bangroo & Wei Guo & Gowhar Meraj & Gebiaw T. Ayele & Nasir Bashir Naikoo & Shahid Shafai & Perminder Singh & Mohammad Muslim & Habitamu Taddese & Irfan Gani & Shafeeq Ur Ra, 2022. "Simulating Spatiotemporal Changes in Land Use and Land Cover of the North-Western Himalayan Region Using Markov Chain Analysis," Land, MDPI, vol. 11(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. Lucie Kupková & Ivan Bičík & Leoš Jeleček, 2021. "At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces," Land, MDPI, vol. 10(1), pages 1-25, January.
    3. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    6. Mugido, Worship & Shackleton, Charlie M., 2019. "The contribution of NTFPS to rural livelihoods in different agro-ecological zones of South Africa," Forest Policy and Economics, Elsevier, vol. 109(C).
    7. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    8. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    9. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    10. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    11. Jennifer M. Alix-Garcia & Elizabeth N. Shapiro & Katharine R. E. Sims, 2012. "Forest Conservation and Slippage: Evidence from Mexico’s National Payments for Ecosystem Services Program," Land Economics, University of Wisconsin Press, vol. 88(4), pages 613-638.
    12. Zulauf, Carl R. & Orden, David, 2014. "Assessing the Political Economy of the 2014 U.S. Farm Bill," 2014: Food, Resources and Conflict, December 7-9, 2014. San Diego, California 197160, International Agricultural Trade Research Consortium.
    13. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    14. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    15. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    16. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    17. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    18. Peng Tian & Luodan Cao & Jialin Li & Ruiliang Pu & Hongbo Gong & Changda Li, 2020. "Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    19. Myeong Ja Kwak & Jong Kyu Lee & Sanghee Park & Yea Ji Lim & Handong Kim & Kyeong Nam Kim & Sun Mi Je & Chan Ryul Park & Su Young Woo, 2020. "Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    20. Ge Shi & Peng Ye & Liang Ding & Agustin Quinones & Yang Li & Nan Jiang, 2019. "Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5174-:d:269341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.