IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3564-d243775.html
   My bibliography  Save this article

A Safety Performance Assessment Framework for the Petroleum Industry’s Sustainable Development Based on FAHP-FCE and Human Factors

Author

Listed:
  • Junqiao Zhang

    (School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China)

  • Xuebo Chen

    (School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China)

  • Qiubai Sun

    (School of Business Administration, University of Science and Technology Liaoning, Anshan 114051, China)

Abstract

Sustainability is a key factor in petroleum industry development, determining whether an enterprise has the ability to maintain high-quality safety management in the long term. In order to reduce occupational injuries and accidents, and to improve safety in the petroleum industry, this study proposes a hybrid approach based on the fuzzy analytical hierarchy process (FAHP), human factors, and the fuzzy comprehensive evaluation (FCE) method in order to assess safety performance in a petroleum enterprise. This paper is comprised of four stages. In the first stage, a model is constructed for assessing the safety of the petroleum industry based on a literature review. In the second stage, we use the FAHP to determine the weights of five factors and 19 sub-factors. In the third stage, employees are the subjects of a questionnaire on the safety performance of the petroleum enterprise. According to the analysis of the assessment results, we focus on improving employees’ safety behaviors and mental health. A second round of questionnaires is distributed to the employees, and a second set of assessment results obtained. Finally, the results of the two evaluations are compared, and the effectiveness of the combination of FAHP, human factors, and FCE is verified.

Suggested Citation

  • Junqiao Zhang & Xuebo Chen & Qiubai Sun, 2019. "A Safety Performance Assessment Framework for the Petroleum Industry’s Sustainable Development Based on FAHP-FCE and Human Factors," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3564-:d:243775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Wenhua & Yu, Suihuai & Pei, Huining & Zhao, Chuan & Tian, Baozhen, 2017. "A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 49-64.
    2. Heimann, Larry, 2005. "Repeated Failures in the Management of High Risk Technologies," European Management Journal, Elsevier, vol. 23(1), pages 105-117, February.
    3. Kariuki, S.G. & Löwe, K., 2007. "Integrating human factors into process hazard analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1764-1773.
    4. Alipour, M. & Alighaleh, S. & Hafezi, R. & Omranievardi, M., 2017. "A new hybrid decision framework for prioritizing funding allocation to Iran's energy sector," Energy, Elsevier, vol. 121(C), pages 388-402.
    5. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    6. Rajesh Kr. Singh & Angappa Gunasekaran & Pravin Kumar, 2018. "Third party logistics (3PL) selection for cold chain management: a fuzzy AHP and fuzzy TOPSIS approach," Annals of Operations Research, Springer, vol. 267(1), pages 531-553, August.
    7. Tufan Demirel & Nihan Çetin Demirel & Cengiz Kahraman, 2008. "Fuzzy Analytic Hierarchy Process and its Application," Springer Optimization and Its Applications, in: Cengiz Kahraman (ed.), Fuzzy Multi-Criteria Decision Making, pages 53-83, Springer.
    8. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    9. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abraham Londoño-Pineda & Jose Alejandro Cano & Rodrigo Gómez-Montoya, 2021. "Application of AHP for the Weighting of Sustainable Development Indicators at the Subnational Level," Economies, MDPI, vol. 9(4), pages 1-17, November.
    2. Arlene Lu-Gonzales & Takuji W. Tsusaka & Sylvia Szabo & Reuben M. J. Kadigi & Camilla Blasi Foglietti & Seree Park & Zoe Matthews, 2023. "Evaluating the Contribution of Complex International Research-for-Development Programmes to the Sustainable Development Goals," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(2), pages 380-401, April.
    3. Seungho Jung & Seungkyoo Pak & Kwanwoo Lee & Chankyu Kang, 2021. "Classification of Human Failure in Chemical Plants: Case Study of Various Types of Chemical Accidents in South Korea from 2010 to 2017," IJERPH, MDPI, vol. 18(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    2. Chenying Li & Tiantian Zhang & Xi Wang & Zefeng Lian, 2022. "Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China," IJERPH, MDPI, vol. 19(20), pages 1-27, October.
    3. Klaus D. Goepel, 2019. "Comparison of Judgment Scales of the Analytical Hierarchy Process — A New Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 445-463, March.
    4. Kabir, Golam & Sumi, Razia Sultana, 2014. "Power substation location selection using fuzzy analytic hierarchy process and PROMETHEE: A case study from Bangladesh," Energy, Elsevier, vol. 72(C), pages 717-730.
    5. Patanjal Kumar & Sachin Kumar Mangla & Yigit Kazancoglu & Ali Emrouznejad, 2023. "A decision framework for incorporating the coordination and behavioural issues in sustainable supply chains in digital economy," Annals of Operations Research, Springer, vol. 326(2), pages 721-749, July.
    6. Alipour, Mohammad & Hafezi, Reza & Ervural, Bilal & Kaviani, Mohamad Amin & Kabak, Özgür, 2018. "Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security," Energy, Elsevier, vol. 157(C), pages 914-931.
    7. Lupo, Toni, 2013. "Handling stakeholder uncertain judgments in strategic transport service analyses," Transport Policy, Elsevier, vol. 29(C), pages 54-63.
    8. Meng-Chuan Tsai & Chin-Tsai Lin, 2012. "Selecting an Optimal Region by Fuzzy Group Decision Making: Empirical Evidence from Medical Investors," Group Decision and Negotiation, Springer, vol. 21(3), pages 399-416, May.
    9. Hasan Eroğlu, 2021. "Multi-criteria decision analysis for wind power plant location selection based on fuzzy AHP and geographic information systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18278-18310, December.
    10. Derya Gul & Ahmet Serhat Uludag, 2016. "Determination of the Most Charismatic Leader Using Analytic Hierarchy Process and Fuzzy TOPSIS: An Application in Turkey," International Business Research, Canadian Center of Science and Education, vol. 9(7), pages 80-97, July.
    11. Jun Dong & Huijuan Huo & Sen Guo, 2016. "Demand Side Management Performance Evaluation for Commercial Enterprises," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
    12. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Osman Taylan & Rami Alamoudi & Mohammad Kabli & Alawi AlJifri & Fares Ramzi & Enrique Herrera-Viedma, 2020. "Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions," Sustainability, MDPI, vol. 12(7), pages 1-27, March.
    14. Magdalena Ligus, 2017. "Evaluation of Economic, Social and Environmental Effects of Low-Emission Energy Technologies Development in Poland: A Multi-Criteria Analysis with Application of a Fuzzy Analytic Hierarchy Process (FA," Energies, MDPI, vol. 10(10), pages 1-20, October.
    15. Panagiotis K. Marhavilas & Michail Filippidis & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry," Sustainability, MDPI, vol. 12(3), pages 1-29, January.
    16. Rajesh Kr Singh & Sachin Kumar Mangla & Manjot Singh Bhatia & Sunil Luthra, 2022. "Integration of green and lean practices for sustainable business management," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 353-370, January.
    17. Akbaş, Halil & Bilgen, Bilge, 2017. "An integrated fuzzy QFD and TOPSIS methodology for choosing the ideal gas fuel at WWTPs," Energy, Elsevier, vol. 125(C), pages 484-497.
    18. Zhanwu Wang & Guangyin Xu & Zhenfeng Wang & Zhiping Zhang, 2022. "Sustainability of agricultural waste power generation industry in China: criteria relationship identification and policy design mechanism," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3371-3395, March.
    19. Pasura Aungkulanon & Walailak Atthirawong & Woranat Sangmanee & Pongchanun Luangpaiboon, 2023. "Fuzzy Techniques and Adjusted Mixture Design-Based Scenario Analysis in the CLMV (Cambodia, Lao PDR, Myanmar and Vietnam) Subregion for Multi-Criteria Decision Making in the Apparel Industry," Mathematics, MDPI, vol. 11(23), pages 1-32, November.
    20. Pranav Gupta & Alka Bharat, 2022. "Developing sustainable development Index as a tool for appropriate urban land take," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13378-13406, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3564-:d:243775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.