IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3118-d236685.html
   My bibliography  Save this article

Evaluating the Thermal Performance of Wet Swales Housing Ground Source Heat Pump Elements through Laboratory Modelling

Author

Listed:
  • Carlos Rey-Mahía

    (INDUROT Research Institute, GICONSIME Research Group, Department of Construction and Manufacturing Engineering, University of Oviedo, Campus of Mieres, Gonzalo Gutierrez Quiros s/n, 33600 Mieres, Spain)

  • Luis A. Sañudo-Fontaneda

    (INDUROT Research Institute, GICONSIME Research Group, Department of Construction and Manufacturing Engineering, University of Oviedo, Campus of Mieres, Gonzalo Gutierrez Quiros s/n, 33600 Mieres, Spain
    Centre for Agroecology, Water and Resilience, Coventry University, Ryton Gardens, Coventry CV8 3LG, UK)

  • Valerio C. Andrés-Valeri

    (Instituto de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, General Lagos 2086, Campus de Miraflores, Valdivia 5090000, Chile
    GITECO Research Group, University of Cantabria, Avenida de los Castros 44, 39005 Santander, Spain)

  • Felipe Pedro Álvarez-Rabanal

    (INDUROT Research Institute, GICONSIME Research Group, Department of Construction and Manufacturing Engineering, University of Oviedo, Campus of Mieres, Gonzalo Gutierrez Quiros s/n, 33600 Mieres, Spain)

  • Stephen John Coupe

    (Centre for Agroecology, Water and Resilience, Coventry University, Ryton Gardens, Coventry CV8 3LG, UK)

  • Jorge Roces-García

    (Department of Construction and Manufacturing Engineering, University of Oviedo, Campus of Gijón, Pedro Puig Adam s/n, EDO6, 33203 Gijón, Spain)

Abstract

Land-use change due to rapid urbanization poses a threat to urban environments, which are in need of multifunctional green solutions to face complex future socio-ecological and climate scenarios. Urban regeneration strategies, bringing green infrastructure, are currently using sustainable urban drainage systems to exploit the provision of ecosystem services and their wider benefits. The link between food, energy and water depicts a technological knowledge gap, represented by previous attempts to investigate the combination between ground source heat pump and permeable pavement systems. This research aims to transfer these concepts into greener sustainable urban drainage systems like wet swales. A 1:2 scaled laboratory models were built and analysed under a range of ground source heat pump temperatures (20–50 °C). Behavioral models of vertical and inlet/outlet temperature difference within the system were developed, achieving high R 2 , representing the first attempt to describe the thermal performance of wet swales in literature when designed alongside ground source heat pump elements. Statistical analyses showed the impact of ambient temperature and the heating source at different scales in all layers, as well as, the resilience to heating processes, recovering their initial thermal state within 16 h after the heating stage.

Suggested Citation

  • Carlos Rey-Mahía & Luis A. Sañudo-Fontaneda & Valerio C. Andrés-Valeri & Felipe Pedro Álvarez-Rabanal & Stephen John Coupe & Jorge Roces-García, 2019. "Evaluating the Thermal Performance of Wet Swales Housing Ground Source Heat Pump Elements through Laboratory Modelling," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3118-:d:236685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian C. Abrahams & Stephen J. Coupe & Luis A. Sañudo-Fontaneda & Ulrich Schmutz, 2017. "The Brookside Farm Wetland Ecosystem Treatment (WET) System: A Low-Energy Methodology for Sewage Purification, Biomass Production (Yield), Flood Resilience and Biodiversity Enhancement," Sustainability, MDPI, vol. 9(1), pages 1-13, January.
    2. Elisa Palazzo, 2019. "From water sensitive to floodable: defining for water resilient cities," Journal of Urban Design, Taylor & Francis Journals, vol. 24(1), pages 137-157, January.
    3. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    4. Pappalardo, Viviana & La Rosa, Daniele & Campisano, Alberto & La Greca, Paolo, 2017. "The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study," Ecosystem Services, Elsevier, vol. 26(PB), pages 345-354.
    5. Lorena Peña & Miren Onaindia & Beatriz Fernández de Manuel & Ibone Ametzaga-Arregi & Izaskun Casado-Arzuaga, 2018. "Analysing the Synergies and Trade-Offs between Ecosystem Services to Reorient Land Use Planning in Metropolitan Bilbao (Northern Spain)," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    6. Fan, Jing-Li & Kong, Ling-Si & Wang, Hang & Zhang, Xian, 2019. "A water-energy nexus review from the perspective of urban metabolism," Ecological Modelling, Elsevier, vol. 392(C), pages 128-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    2. Carlos Rey-Mahía & Felipe Pedro Álvarez-Rabanal & Luis Angel Sañudo-Fontaneda & Mario Hidalgo-Tostado & Antonio Menéndez Suárez-Inclán, 2022. "An Experimental and Numerical Approach to Multifunctional Urban Surfaces through Blue Roofs," Sustainability, MDPI, vol. 14(3), pages 1-15, February.
    3. Ana Isabel Abellán García & Noelia Cruz Pérez & Juan C. Santamarta, 2021. "Sustainable Urban Drainage Systems in Spain: Analysis of the Research on SUDS Based on Climatology," Sustainability, MDPI, vol. 13(13), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoros Chrysanidis & Dimitra Mousama & Eleni Tzatzo & Nikolaos Alamanis & Dimos Zachos, 2022. "Study of the Effect of a Seismic Zone to the Construction Cost of a Five-Story Reinforced Concrete Building," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    2. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Giuseppe Barbaro & Marcelo Gomes Miguez & Matheus Martins de Sousa & Anna Beatriz Ribeiro da Cruz Franco & Paula Morais Canedo de Magalhães & Giandomenico Foti & Matheus Rocha Valadão & Irene Occhiuto, 2021. "Innovations in Best Practices: Approaches to Managing Urban Areas and Reducing Flood Risk in Reggio Calabria (Italy)," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    4. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    5. Yi Zhao & Gang Lin & Dong Jiang & Jingying Fu & Xiang Li, 2022. "Low-Carbon Development from the Energy–Water Nexus Perspective in China’s Resource-Based City," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    6. Riccardo Privitera & Daniele La Rosa, 2018. "Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    7. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    8. Jinyoung Lee & Hana Kim, 2021. "Regional dimensions of the South Korean water-energy nexus," Energy & Environment, , vol. 32(4), pages 722-736, June.
    9. Stefano Salata & Koray Velibeyoğlu & Alper Baba & Nicel Saygın & Virginia Thompson Couch & Taygun Uzelli, 2022. "Adapting Cities to Pluvial Flooding: The Case of Izmir (Türkiye)," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    10. Zhipeng Tang & Ziao Mei & Tao Song & Chenxinyi Yang, 2022. "Gearing Urban Metabolism toward the Carbon Neutrality Target: A Case Study of Hebei Province, China," Energies, MDPI, vol. 15(14), pages 1-16, July.
    11. Raphael Karutz & Ines Omann & Steven M. Gorelick & Christian J. A. Klassert & Heinrich Zozmann & Yuanzao Zhu & Sigrun Kabisch & Annegret Kindler & Anjuli Jain Figueroa & Ankun Wang & Karin Küblböck & , 2022. "Capturing Stakeholders’ Challenges of the Food–Water–Energy Nexus—A Participatory Approach for Pune and the Bhima Basin, India," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    12. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Bingmiao Zhu & Xun Zhu & Ran Zhang & Xiaolong Zhao, 2019. "Study of Multiple Land Use Planning Based on the Coordinated Development of Wetland Farmland: A Case Study of Fuyuan City, China," Sustainability, MDPI, vol. 11(1), pages 1-13, January.
    14. Leydy Alejandra Castellanos & Pierre-Antoine Versini & Olivier Bonin & Ioulia Tchiguirinskaia, 2020. "A Text-Mining Approach to Compare Impacts and Benefits of Nature-Based Solutions in Europe," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    15. Bennett, James & Marandure, Tawanda & Hawkins, Heidi-Jayne & Mapiye, Cletos & Palmer, Anthony & Lemke, Stefanie & Wu, Lianhai & Moradzadeh, Mostafa, 2023. "A conceptual framework for understanding ecosystem trade-offs and synergies, in communal rangeland systems," Ecosystem Services, Elsevier, vol. 61(C).
    16. Patrycia Brzoska & Aiga Spāģe, 2020. "From City- to Site-Dimension: Assessing the Urban Ecosystem Services of Different Types of Green Infrastructure," Land, MDPI, vol. 9(5), pages 1-18, May.
    17. Simona Mannucci & Federica Rosso & Alessandro D’Amico & Gabriele Bernardini & Michele Morganti, 2022. "Flood Resilience and Adaptation in the Built Environment: How Far along Are We?," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    18. Viviana Pappalardo & Daniele La Rosa, 2023. "Spatial Analysis of Flood Exposure and Vulnerability for Planning More Equal Mitigation Actions," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    19. Stefano Salata & Silvia Ronchi & Carolina Giaimo & Andrea Arcidiacono & Giulio Gabriele Pantaloni, 2021. "Performance-Based Planning to Reduce Flooding Vulnerability Insights from the Case of Turin (North-West Italy)," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    20. Byung-Chul An & Eun-Yeong Park, 2017. "Water Treatment Measures to Improve Ecological Value in Traditional Korean Villages: The Case of Oeam Village, Asan City, Korea," Sustainability, MDPI, vol. 9(7), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3118-:d:236685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.