IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2891-d233080.html
   My bibliography  Save this article

Sustainable Intensification with Cereal-Legume Intercropping in Eastern and Southern Africa

Author

Listed:
  • Abednego Kiwia

    (Alliance for Green Revolution in Africa (AGRA), West End Towers, Waiyaki Way, P.O. Box 66773 Westlands, Nairobi 00800, Kenya)

  • David Kimani

    (Alliance for Green Revolution in Africa (AGRA), West End Towers, Waiyaki Way, P.O. Box 66773 Westlands, Nairobi 00800, Kenya)

  • Rebbie Harawa

    (Alliance for Green Revolution in Africa (AGRA), West End Towers, Waiyaki Way, P.O. Box 66773 Westlands, Nairobi 00800, Kenya)

  • Bashir Jama

    (Islamic Development Bank, 8111 King Khalid St., Al Nuzlah Al Yamania Dist., Jeddah 22332-2444, Saudi Arabia)

  • Gudeta W. Sileshi

    (Plot 1244, Ibex Hill, 10100 Lusaka, Zambia
    School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg 4041, South Africa)

Abstract

Much research has been conducted on cereal-legume intercropping as a sustainable intensification (SI) practice in Eastern and Southern Africa (ESA). However, the role of inorganic fertilizers in sustainably intensifying intercropping systems has not been systematically analyzed. Therefore, the objective of the present analysis was to assess the role of inorganic fertilizer use in cereal-pigeonpea ( Cajanus cajan ) intercropping in terms of SI indicators, namely, yield, production risks, input use efficiency, and economic returns. The data used for this analysis were gathered from over 900 on-farm trials across Kenya, Tanzania, and Mozambique. All SI indicators assessed showed that intercropping combined with application of small amounts of inorganic fertilizers is superior to unfertilized intercrops. Fertilizer application in the intercropping system improved cereal yields by 71–282% and pigeon pea yields by 32–449%, increased benefit–cost ratios by 10–40%, and reduced variability in cereal yields by 40–56% and pigeonpea yields by 5–52% compared with unfertilized intercrops. Improved yields and reduced variability imply lowering farmers’ risk exposure and improved credit rating, which could enhance access to farm inputs. We conclude that the strategic application of small amounts of inorganic fertilizers is essential for the productivity and economic sustainability of cereal-pigeonpea intercropping under smallholder farming in ESA.

Suggested Citation

  • Abednego Kiwia & David Kimani & Rebbie Harawa & Bashir Jama & Gudeta W. Sileshi, 2019. "Sustainable Intensification with Cereal-Legume Intercropping in Eastern and Southern Africa," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2891-:d:233080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Snapp, Sieglinde S. & Grabowski, Philip & Chikowo, Regis & Smith, Alex & Anders, Erin & Sirrine, Dorothy & Chimonyo, Vimbayi & Bekunda, Mateete, 2018. "Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible?," Agricultural Systems, Elsevier, vol. 162(C), pages 77-88.
    2. von Braun, Joachim & Gerber, Nicolas & Mirzabaev, Alisher & Nkonya, Ephraim M., 2013. "The Economics of Land Degradation," Working Papers 147910, University of Bonn, Center for Development Research (ZEF).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorothy Birungi Namuyiga & Till Stellmacher & Christian Borgemeister & Jeroen C. J. Groot, 2022. "A Typology and Preferences for Pigeon Pea in Smallholder Mixed Farming Systems in Uganda," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    2. Paulo Dimande & Margarida Arrobas & Manuel Ângelo Rodrigues, 2024. "Intercropped Maize and Cowpea Increased the Land Equivalent Ratio and Enhanced Crop Access to More Nitrogen and Phosphorus Compared to Cultivation as Sole Crops," Sustainability, MDPI, vol. 16(4), pages 1-16, February.
    3. Hongmi Koo & Janina Kleemann & Christine Fürst, 2020. "Integrating Ecosystem Services into Land-Use Modeling to Assess the Effects of Future Land-Use Strategies in Northern Ghana," Land, MDPI, vol. 9(10), pages 1-24, October.
    4. Josefa López-Marín & Miriam Romero & Amparo Gálvez & Francisco Moisés del Amor & Maria Carmen Piñero & José Manuel Brotons-Martínez, 2021. "The Use of Hydromulching as an Alternative to Plastic Films in an Artichoke ( Cynara cardunculus cv. Symphony) Crop: A Study of the Economic Viability," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    5. Luca Tricarico & Andrea Galimberti & Ausilia Campanaro & Chiara Magoni & Massimo Labra, 2020. "Experimenting with RRI tools to Drive Sustainable Agri-Food Research: The SASS Case Study from Sub-Saharan Africa," Sustainability, MDPI, vol. 12(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adamou, Pr. Rabani & Ibrahim, Boubacar & Bonkaney, Abdou Latif & Seyni, Abdoul Aziz & Idrissa, Mamoudou, 2021. "Niger - Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security," Working Papers 308806, University of Bonn, Center for Development Research (ZEF).
    2. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    3. Le, Quang Bao & Nkonya, Ephraim & Mirzabaev, Alisher, 2014. "Biomass Productivity-Based Mapping of Global Land Degradation Hotspots," Discussion Papers 177961, University of Bonn, Center for Development Research (ZEF).
    4. Osman, Abdelrahman Khidir & Ali, Adil M., 2021. "Sudan - Land, climate, energy, agriculture and development: A study in the Sudano-Sahel Initiative for Regional Development, Jobs, and Food Security," Working Papers 308810, University of Bonn, Center for Development Research (ZEF).
    5. Daum, Thomas, 2018. "Of Bulls and Bulbs: Aspirations and perceptions of rural youth in Zambia," Working Papers 275061, University of Bonn, Center for Development Research (ZEF).
    6. Salvatierra Rojas, Ana & Torres Toledo, Victor & Mrabet, Farah & Müller, Joachim, 2018. "Improving milk value chains through solar milk cooling," Working Papers 276621, University of Bonn, Center for Development Research (ZEF).
    7. Haftu Etsay & Shunji Oniki & Melaku Berhe & Teklay Negash, 2022. "The Watershed Communal Land Management and Livelihood of Rural Households in Kilte Awlaelo Woreda, Tigray Region, Ethiopia," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    8. von Braun, Joachim & Mirzabaev, Alisher, 2015. "Small Farms: Changing Structures and Roles in Economic Development," Discussion Papers 210464, University of Bonn, Center for Development Research (ZEF).
    9. Ganguly, Kavery & Gulati, Ashok & von Braun, Joachim, 2017. "Innovations spearheading the next transformations in India‘s agriculture," Working Papers 259006, University of Bonn, Center for Development Research (ZEF).
    10. Joachim von Braun, 2016. "Policy Nook: “Expanding Water Modeling to Serve Real Policy Needs”," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-9, December.
    11. Anna Ágústsdóttir, 2015. "Ecosystem approach for natural hazard mitigation of volcanic tephra in Iceland: building resilience and sustainability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1669-1691, September.
    12. Gulati, Ashok & Sandip, Das, 2020. "India-Africa Partnership in Trade and Investment: With Focus on the Agriculture and Food Sector," Working Papers 304756, University of Bonn, Center for Development Research (ZEF).
    13. Kihara, Job & Manda, Julius & Kimaro, Anthony & Swai, Elirehema & Mutungi, Christopher & Kinyua, Michael & Okori, Patrick & Fischer, Gundula & Kizito, Fred & Bekunda, Mateete, 2022. "Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania," Agricultural Systems, Elsevier, vol. 203(C).
    14. Maria G. Lampridi & Claus G. Sørensen & Dionysis Bochtis, 2019. "Agricultural Sustainability: A Review of Concepts and Methods," Sustainability, MDPI, vol. 11(18), pages 1-27, September.
    15. Tolstoguzov, Oleg & Belykh, Anastasia, 2022. "Modeling the interface between the social geosystem and the environment," MPRA Paper 113164, University Library of Munich, Germany.
    16. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    17. Sara Kaweesa & Saidi Mkomwa & Willibald Loiskandl, 2018. "Adoption of Conservation Agriculture in Uganda: A Case Study of the Lango Subregion," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    18. Kirui, Oliver K., 2016. "Impact of land degradation on household poverty: evidence from a panel data simultaneous equation model," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246396, African Association of Agricultural Economists (AAAE).
    19. Yoosoon An & Soojin Park, 2023. "Developing an Agent-Based Model to Mitigate Famine Risk in North Korea: Insights from the “Artificial North Korean Collective Farm” Model," Land, MDPI, vol. 12(4), pages 1-23, March.
    20. von Braun, Joachim & Gulati, Ashok & Kharas, Homi, 2017. "Key policy actions for sustainable land and water use to serve people," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2891-:d:233080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.