IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3208-d168446.html
   My bibliography  Save this article

Development of an Ex-Ante Sustainability Assessment Methodology for Municipal Solid Waste Management Innovations

Author

Listed:
  • Jing Wang

    (Institute of Infrastructure and Resource Management, University of Leipzig, 04109 Leipzig, Germany)

  • Stephanie D. Maier

    (Department of Life Cycle Engineering, University of Stuttgart, 70563 Stuttgart, Germany
    Department of Life Cycle Engineering, Fraunhofer Institute for Building Physics, 70563 Stuttgart, Germany)

  • Rafael Horn

    (Department of Life Cycle Engineering, University of Stuttgart, 70563 Stuttgart, Germany
    Department of Life Cycle Engineering, Fraunhofer Institute for Building Physics, 70563 Stuttgart, Germany)

  • Robert Holländer

    (Institute of Infrastructure and Resource Management, University of Leipzig, 04109 Leipzig, Germany)

  • Ralf Aschemann

    (Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, 8010 Graz, Austria)

Abstract

Various municipal solid waste management (MSWM) innovations have emerged in developing countries in face of the challenges posed by increasing waste generation and poor MSWM practice. We present a methodology to assess the potential sustainability impact of MSWM innovations in a holistic manner. The Life Cycle Sustainability Analysis (LCSA) framework and the United Nations (UN) sustainable development goals (SDGs) facilitated the methodology development. The result of applying the methodology to the case of waste bank (WB) in Bandung City shows that WB potentially generates the greatest sustainability impact in the resource recovery phase and the smallest impact in the collection and final disposal phase. All negative impacts could arise in the economic dimension. Surprisingly, WB as a national strategy to achieve 3Rs would not effectively solve Bandung City’s landfill problem. Almost all SDGs would benefit from the WB program under the assumed conditions. This methodology will facilitate the decision-making in MSWM by (1) comparing available innovations to find the optimal solution, (2) identifying the hot spots and taking measures to combat the negative impacts, (3) providing the basis for monitoring the implementation process and the ex-post performance assessment.

Suggested Citation

  • Jing Wang & Stephanie D. Maier & Rafael Horn & Robert Holländer & Ralf Aschemann, 2018. "Development of an Ex-Ante Sustainability Assessment Methodology for Municipal Solid Waste Management Innovations," Sustainability, MDPI, vol. 10(9), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3208-:d:168446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Kühnen & Rüdiger Hahn, 2017. "Indicators in Social Life Cycle Assessment: A Review of Frameworks, Theories, and Empirical Experience," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1547-1565, December.
    2. Florin Constantin Mihai, 2017. "Solid Waste Management in Rural Areas," Post-Print hal-01584069, HAL.
    3. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    4. Aretha Aprilia & Tetsuo Tezuka & Gert Spaargaren, 2012. "Household Solid Waste Management in Jakarta, Indonesia: A Socio-Economic Evaluation," Chapters, in: Luis Fernando Marmolejo Rebellon (ed.), Waste Management - An Integrated Vision, IntechOpen.
    5. Florin-Constantin Mihai (ed.), 2017. "Solid Waste Management in Rural Areas," Books, IntechOpen, number 4631.
    6. Shafiqur Rahman & Md Saidul Borhan & Saqib Mukhtar & Sergio Capareda, 2012. "Greenhouse Gas Emissions from Housing and Manure Management Systems at Confined Livestock Operations," Chapters, in: Luis Fernando Marmolejo Rebellon (ed.), Waste Management - An Integrated Vision, IntechOpen.
    7. Peter Tarne & Marzia Traverso & Matthias Finkbeiner, 2017. "Review of Life Cycle Sustainability Assessment and Potential for Its Adoption at an Automotive Company," Sustainability, MDPI, vol. 9(4), pages 1-23, April.
    8. Dwi Wulandari & Sugeng Hadi Utomo & Bagus Shandy Narmaditya, 2017. "Waste Bank: Waste Management Model in Improving Local Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 36-41.
    9. Bueno, G. & Latasa, I. & Lozano, P.J., 2015. "Comparative LCA of two approaches with different emphasis on energy or material recovery for a municipal solid waste management system in Gipuzkoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 449-459.
    10. Milena Stefanova & Concetta Tripepi & Alessandra Zamagni & Paolo Masoni, 2014. "Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass," Sustainability, MDPI, vol. 6(8), pages 1-13, August.
    11. Stephanie D. Maier & Tabea Beck & Javier Francisco Vallejo & Rafael Horn & Jan-Hendrik Söhlemann & Trung Thanh Nguyen, 2016. "Methodological Approach for the Sustainability Assessment of Development Cooperation Projects for Built Innovations Based on the SDGs and Life Cycle Thinking," Sustainability, MDPI, vol. 8(10), pages 1-26, October.
    12. Christian Zurbrügg & Marco Caniato & Mentore Vaccari, 2014. "How Assessment Methods Can Support Solid Waste Management in Developing Countries—A Critical Review," Sustainability, MDPI, vol. 6(2), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasquale De Toro & Enrico Formato & Nicola Fierro, 2023. "Sustainability Assessments of Peri-Urban Areas: An Evaluation Model for the Territorialization of the Sustainable Development Goals," Land, MDPI, vol. 12(7), pages 1-32, July.
    2. Ondrej Stopka & Maria Stopkova & Rudolf Kampf, 2019. "Application of the Operational Research Method to Determine the Optimum Transport Collection Cycle of Municipal Waste in a Predesignated Urban Area," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    3. Kristina Henzler & Stephanie D. Maier & Michael Jäger & Rafael Horn, 2020. "SDG-Based Sustainability Assessment Methodology for Innovations in the Field of Urban Surfaces," Sustainability, MDPI, vol. 12(11), pages 1-32, June.
    4. So Young Lee & José M. Díaz-Puente & Pablo Vidueira, 2020. "Enhancing Rural Innovation and Sustainability Through Impact Assessment: A Review of Methods and Tools," Sustainability, MDPI, vol. 12(16), pages 1-26, August.
    5. Cristina M. Campos-Alba & Emilio J. De la Higuera-Molina & Gemma Pérez-López & José L. Zafra-Gómez, 2019. "Measuring the Efficiency of Public and Private Delivery Forms: An Application to the Waste Collection Service Using Order-M Data Panel Frontier Analysis," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    6. Marius PETRESCU & Ionica ONCIOIU & Anca-Gabriela PETRESCU & Florentina-Raluca BÎLCAN & Mihai PETRESCU & Dumitru-Alexandru STOICA, 2021. "Estimating the Dynamics of Household Waste Management in Turkey," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 129-143, June.
    7. Pamela L. Ghesla & Luciana P. Gomes & Marcelo O. Caetano & Luis A. S. Miranda & Léa B. Dai-Prá, 2018. "Municipal Solid Waste Management from the Experience of São Leopoldo/Brazil and Zurich/Switzerland," Sustainability, MDPI, vol. 10(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, vol. 11(20), pages 1-43, October.
    2. Marwa Hannouf & Getachew Assefa, 2018. "A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    3. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    4. Louisa Pollok & Sebastian Spierling & Hans-Josef Endres & Ulrike Grote, 2021. "Social Life Cycle Assessments: A Review on Past Development, Advances and Methodological Challenges," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    5. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    6. Michael Kühnen & Samanthi Silva & Rüdiger Hahn, 2022. "From negative to positive sustainability performance measurement and assessment? A qualitative inquiry drawing on framing effects theory," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 1985-2001, July.
    7. MIHAI, Florin Constantin, 2017. "Rural waste management at global level (Introductory chapter)," SocArXiv jn8zf, Center for Open Science.
    8. Ulrike Schinkel & Nadja Becker & Manuel Trapp & Mike Speck, 2022. "Assessing the Contribution of Innovative Technologies to Sustainable Development for Planning and Decision-Making Processes: A Set of Indicators to Describe the Performance of Sustainable Urban Infras," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    9. Jacoba M. M. Viljoen & Catherina J. Schenck & Liza Volschenk & Phillip F. Blaauw & Lizette Grobler, 2021. "Household Waste Management Practices and Challenges in a Rural Remote Town in the Hantam Municipality in the Northern Cape, South Africa," Sustainability, MDPI, vol. 13(11), pages 1-24, May.
    10. Veronika Zavratnik & Dan Podjed & Jure Trilar & Nina Hlebec & Andrej Kos & Emilija Stojmenova Duh, 2020. "Sustainable and Community-Centred Development of Smart Cities and Villages," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    11. Mpinane Flory Senekane & Agnes Makhene & Suzan Oelofse, 2021. "Methodology to Investigate Indigenous Solid Waste Systems and Practices in the Rural Areas Surrounding Maseru (Kingdom of Lesotho)," IJERPH, MDPI, vol. 18(10), pages 1-18, May.
    12. Mpinane Flory Senekane & Agnes Makhene & Suzan Oelofse, 2022. "A Critical Analysis of Indigenous Systems and Practices of Solid Waste Management in Rural Communities: The Case of Maseru in Lesotho," IJERPH, MDPI, vol. 19(18), pages 1-24, September.
    13. Martina Zimek & Andreas Schober & Claudia Mair & Rupert J. Baumgartner & Tobias Stern & Manfred Füllsack, 2019. "The Third Wave of LCA as the “Decade of Consolidation”," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    14. Florin-Constantin Mihai & Adrian Grozavu, 2019. "Role of Waste Collection Efficiency in Providing a Cleaner Rural Environment," Sustainability, MDPI, vol. 11(23), pages 1-22, December.
    15. Andreea Simona Saseanu & Rodica-Manuela Gogonea & Simona Ioana Ghita & Radu Şerban Zaharia, 2019. "The Impact of Education and Residential Environment on Long-Term Waste Management Behavior in the Context of Sustainability," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    16. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    17. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    18. Kristina Henzler & Stephanie D. Maier & Michael Jäger & Rafael Horn, 2020. "SDG-Based Sustainability Assessment Methodology for Innovations in the Field of Urban Surfaces," Sustainability, MDPI, vol. 12(11), pages 1-32, June.
    19. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    20. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3208-:d:168446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.