IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p831-d136518.html
   My bibliography  Save this article

Assessment of Groundwater Drought in the Mangyeong River Basin, Korea

Author

Listed:
  • Jae Min Lee

    (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea)

  • Jong Hoon Park

    (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea)

  • Euijin Chung

    (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea)

  • Nam C. Woo

    (Department of Earth System Sciences, Yonsei University, Seoul 03722, Korea)

Abstract

When groundwater drought occurs, baseflow discharges to surface-water bodies will be reduced and then domestic and agricultural water usage becomes at risk of insufficient supply. Thus, in this study, several methods for groundwater drought assessment were tested with long-term monitoring water-level data in the study area to preserve groundwater sustainability from drought, principally caused by reduced precipitation and propagated through agricultural drought and groundwater drought. Because of the Monsoon climate on the Korean Peninsula, the groundwater storage (or water-level) is secured until the end of summer, then falls by natural discharge during the dry seasons of autumn, winter and the following spring. Thus, the rainfall in the wet season seems to mainly influence groundwater storage until the spring of the following year. As the groundwater level (GWL) declines due to natural drainage and the use of agricultural water increases by the end of the dry season (October–May), the GWL will become lowered below the critical level. Below this level, sufficient water supply is not secured. Using the Standardized Precipitation Index (SPI), threshold method and 95% probability occurrence method, drought detection and the frequency of drought are compared. Groundwater drought using the threshold method results in more frequent occurrence than using the SPI method. The 95% occurrence method responds to severe drought but it also has weakness in missing the man-induced GWL decline in every spring season. For groundwater drought assessment, an appropriate drought index should be utilized according to climatic conditions and catchment characteristics. In the study area, variations of the both natural and anthropogenic effects are mixed and the threshold method is more suitable as a measure for preventing water resources shortage.

Suggested Citation

  • Jae Min Lee & Jong Hoon Park & Euijin Chung & Nam C. Woo, 2018. "Assessment of Groundwater Drought in the Mangyeong River Basin, Korea," Sustainability, MDPI, vol. 10(3), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:831-:d:136518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabor Bekesi & Megan McGuire & Dean Moiler, 2009. "Groundwater Allocation Using a Groundwater Level Response Management Method—Gnangara Groundwater System, Western Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1665-1683, July.
    2. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imane El Bouazzaoui & Yassine Ait Brahim & El Mahdi El Khalki & Adam Najmi & Blaid Bougadir, 2022. "A Summary Analysis of Groundwater Vulnerability to Climate Variability and Anthropic Activities in the Haouz Region, Morocco," Sustainability, MDPI, vol. 14(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    2. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    3. Adrian Werner & Darren Alcoe & Carlos Ordens & John Hutson & James Ward & Craig Simmons, 2011. "Current Practice and Future Challenges in Coastal Aquifer Management: Flux-Based and Trigger-Level Approaches with Application to an Australian Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1831-1853, May.
    4. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    5. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    6. Mohammad Nazeri Tahroudi & Yousef Ramezani & Carlo De Michele & Rasoul Mirabbasi, 2020. "A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4217-4231, October.
    7. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    8. Beshavard, Mahdi & Adib, Arash & Ashrafi, Seyed Mohammad & Kisi, Ozgur, 2022. "Establishing effective warning storage to derive optimal reservoir operation policy based on the drought condition," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    10. Mohsin Butt & Ahmad Waqas & Rashed Mahmood, 2010. "The Combined Effect of Vegetation and Soil Erosion in the Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3701-3714, October.
    11. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    12. Ionuţ Minea & Marina Iosub & Daniel Boicu, 2022. "Multi-scale approach for different type of drought in temperate climatic conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1153-1177, January.
    13. Jiawei Zhou & Xiaohong Chen & Chuang Xu & Pan Wu, 2022. "Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1937-1953, April.
    14. T. Thomas & R. K. Jaiswal & Ravi Galkate & P. C. Nayak & N. C. Ghosh, 2016. "Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in central India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1627-1652, April.
    15. Hasrul Hazman Hasan & Siti Fatin Mohd Razali & Nur Shazwani Muhammad & Asmadi Ahmad, 2022. "Modified Hydrological Drought Risk Assessment Based on Spatial and Temporal Approaches," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    16. Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    17. T. Sharma & U. Panu, 2014. "A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1597-1611, April.
    18. Yeqing Zhai & Jie Liang & Zhenyu An & Xin Li & Ziqian Zhu & Wanting Wang & Yuru Yi & Suhang Yang, 2022. "Data Stream Approach for Exploration of Droughts and Floods Driving Forces in the Dongting Lake Wetland," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    19. Alireza Shokoohi & Reza Morovati, 2015. "Basinwide Comparison of RDI and SPI Within an IWRM Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2011-2026, April.
    20. Ihsan F. Hasan & Rozi Abdullah, 2023. "Multivariate index for monitoring drought (case study, Northeastern of Iraq)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3817-3837, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:831-:d:136518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.